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Executive summary

This document aims to bring together AI-assisted solutions, tools, and architectural components that
can be used to make possible or enhance wireless communication technologies that support immersive
video services for moving objects, or techniques and methodologies to deploy AI algorithms needed for
objected detection and image classification of visual data possibly delivered from edge-enabled nodes
to AR/VR terminals via 5G networks.

In this regard, surveys, reviews and studies already existing in this work package serve as a foundation
on which the AI-assisted networking and edge computing solutions and technologies presented in this
deliverable are built.

The document is organized as follows

 Chapter 1 provides an introduction and an overview of the deliverable. The structure of the
document as well as its relationship to other project outcomes are highlighted in this chapter.

 In chapter 2, we discuss drone localization and coordination using AI technologies that are
able to use image capturing devices as well as antennas for location estimation and tracking.

 Chapter 3, focusses on data and service. More specifically, it presents AI-assisted
methodologies for offloading computation or handing over data to nearby APs for more
efficient caching and storage purposes.

 In chapter 4, we examine wireless networking, scheduling, signalling and optimization of the
wireless communication hardware and various ways the RF signals may be used to convey
information or power to/from moving objects.

 Chapter 5 studies model training on the edge, where the purpose is to find new frameworks
for training AI solutions on the edge in order to facilitate training and/or enhancing data
privacy and security.

 Finally, conclusions and outlooks are given in chapter 6.
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1 Introduction

1.1 Scope of the document

With its focus on AI-assisted technologies in wireless communication, WP4 is tasked to demonstrate
how AI can be used to improve the communication and networking capabilities of 5G wireless systems
or how wireless edges may serve as a platform to run various AI algorithms and solutions in highly
mobile scenarios such as in vehicular and drone (UAV) settings. The title of deliverable 4.3 is “Final
report on AI-assisted networking and edge computing” in which the purpose is to exploit AI technologies
to enhance the network slice orchestration with self-awareness, self-optimization, and self-configuration
for supporting the demanding requirements of verticals as well as to investigate a different format of
edge computing/caching for object detection, image captioning, and image classification that are
needed to enhance visual images possibly delivered to AR/VR terminals via 5G networks.

1.2 Structure of the document

We divide Edge Intelligence into AI for edge and AI on edge [DZW+20]. AI for edge provides a better
solution to optimization problems in edge computing with the help of AI. In other words, it studies how
to leverage AI to provide more optimal solutions to problems in edge computing. Hence, it can also be
called Intelligence-enabled edge computing. On the other hand, AI on edge focuses on how to build AI
models on the edge. It is a scheme for running, training and inference of AI models on the edge. Its
purpose is to learn from experience using distributed edge data. Therefore, it can also be understood
as artificial intelligence on edge.

Based on these definitions, chapters 2 through 4 discusses AI for edge, in which the purpose is to run
edge computing algorithms and it is achieved using AI algorithms and methodologies. More specifically,
chapter 2 discusses UAV positioning, localization and coordination, chapter 3 deals with data and
service distribution, and chapter 4 investigates the topology of edge and the techniques and
methodologies to improve it using AI. On the other hand, the title of chapter 5 is AI on edge where the
purpose is to run AI algorithms using the edge computing platform. The scopes of chapters 2 through
5 is demonstrated in Table 1.1 with regards to AI on edge and AI for edge.

Table 1.1 The scopes of chapters 2 through 5 with regards to AI on edge and AI for edge.

Chapters Area What How

Chapter 2, 3, and 4 AI for Edge Edge Computing Artificial Intelligence

Chapter 5 AI on Edge Artificial Intelligence Edge Computing

1.2.1 Notation

Unless otherwise stated, we use the following notation throughout this deliverable. We use bold lower-
case and upper-case letters for column vectors and matrices respectively and non-bold lower or upper
case letters for scalars. (∙)𝑇 and (∙)∗ denote the transpose and conjugate transpose, respectively and
𝔼[⋅] denotes the statistical expectation operator. |𝜒|  denotes the cardinality of the set 𝜒 , and ℝ+

represents the set of nonnegative real numbers. We write 𝑉~Unif(𝑎, 𝑏), 𝑊~𝒩(𝜇, 𝜎2), 𝑋~𝒞𝒩(𝜇, 𝜎2),
𝑌~Exp(𝑚), and 𝑍~Beta(𝛼, 𝛽), 𝛼, 𝛽 > 0 to show that 𝑉 is distributed uniformly between 𝑎 and 𝑏, 𝑊 is
normally distributed with mean and variance equal to 𝜇 and 𝜎2, 𝑋 is a complex Gaussian RV with mean
and variance equal to 𝜇  and 𝜎2 , and 𝑌  is exponentially distributed with mean 𝑚 , and 𝑍  is beta-
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distributed with parameters 𝛼 and 𝛽. Finally, ℛℯ{𝑧} and ℐ𝓂{𝑧} denote the real and imaginary parts of
the complex number 𝑧.

1.3 Relationship to other project outcomes

As the name suggests, a substantial portion of this deliverable is concerned with AI technologies that
enhance the networking capabilities of edges, which, in the particular case of PriMO-5G are firefighting
drones and robots. In this regard, the algorithms and technologies developed in this deliverable are
related to technologies formed or perfected in WP3. In particular, AI can complement, assist or even
replace the mm-wave transmission technologies. On the other hand, the methodologies discussed in
chapter 5, titled AI on edge, can be closely related to WP1. More specifically, the manner in which AI
algorithms are used in chapter 5 is specified and is highly dependent on the scenarios and uses cases
demonstrated in WP1.
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2 Drone localization and coordination

2.1 Overview

As the primary focus of PriMO-5G is firefighting using drones, drone localization and coordination is
probably the most central technology to consider. Hence, this chapter introduces key technologies
required for UAV localization and coordination that improves performance by adopting AI. Figure 2.1 is
a schematic illustrating a fleet of UAVs moving in a dynamic environment which uses antennas and
cameras to find its path towards the fire location.

Figure 2.1 Schematic of drone localization and coordination using antennas and antennas for
localization and coordination.

In subsequent sections of this chapter we design of a novel noise learning based DAE to improve the
performance of DAE, Q-learning based low complexity beam tracking, and autonomous drone
coordination based on a MADRL framework.

In section 2.2 we propose a new denoiser that modifies the structure of DAE, namely nlDAE. The
proposed nlDAE learns the noise instead of the original data. Then, the denoising is performed by
subtracting the regenerated noise from the noisy input. Hence, nlDAE is more effective than DAE when
the noise is simpler to regenerate than the original data. We validate the effectiveness of nlDAE with
the case study of UAV swarm-based UE localization.

In section 2.3, we propose a low complexity beam tracking algorithm combining model-free Q-learning
for practical mobile mmWave MIMO systems. Compared to existing ABP-based algorithm, the proposed
algorithm requires only a few beam searches with low overhead. In addition, the proposed algorithm is
capable of high resolution angle estimation. The simulation result shows that the proposed beam
tracking algorithm performs better than the existing algorithm without the knowledge of the model.

In section 2.4, we develop a MADLR-based management scheme for network resilience. The core idea
we employ is that DBSes autonomously replenish the deficient network requirements with
communication. Simulation results corroborate that the DBSes achieve a desirable performance in
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terms of network communication reliability.

2.2 Design of a new denoiser based on neural networks: noise learning based
denoising autoencoder

2.2.1 Overview
ML has recently received much attention as a key enabler for future wireless networks [CRT20,
CCS+20, AOC19]. Among ML algorithms, DAE is widely utilized to improve the performance of
applications in wireless networks by denoising observed data that is a superposition of the original data
and noise [SPZ+19]. DAE is a NN model for unsupervised learning of a representation based on the
construction of the learned representations robust to the addition of noise to the input samples
[BYA+13]. The mechanism of DAE can be represented by two parts: 1) optimizing the NN by training a
noisy training dataset towards the true input dataset, 2) denoising the test dataset using the optimized
NN. The representative feature of DAE is that the dimension of the latent space is smaller than the size
of the input vector. It means that the NN model is capable of encoding and decoding through a smaller
dimension where the data can be represented.

The objective of this section is to improve the performance of DAE with a simple modification of its
structure. Consider a noisy observation 𝑌 which consists of the original data 𝑋 and the noise 𝑁, i.e.,
𝑌 = 𝑋 + 𝑁 . From the information theoretical perspective, DAE attempts to minimize the expected
reconstruction error by maximizing a lower bound on mutual information  𝐼(𝑋; 𝑌) . In other words,
although 𝑌 is a function of the noisy input, it should capture the information of 𝑋 as much as possible.
Additionally, from the manifold learning perspective, DAE can be seen as a way to find a manifold where
𝑌 represents the data in a low dimensional latent space corresponding to 𝑋. However, we often face
the problem that the stochastic feature of 𝑋 to be restored is too complex to regenerate or represent.
This is called the curse of dimensionality, i.e., the dimension of latent space for 𝑋 is still too high in
many cases.

What can we do if 𝑁 is simpler to regenerate than 𝑋? It will be more effective to learn 𝑁 and subtract it
from 𝑌 instead of learning 𝑋 directly. In this light, we propose a new denoising framework, named
nlDAE. The main advantage of nlDAE is that it can maximize the efficiency of the ML approach (e.g.,
the required dimension of the latent space or number of training dataset) for wireless communications
where 𝑁 is typically easier to regenerate than 𝑋 owing to their stochastic characteristics. To verify the
advantage of nlDAE over the conventional DAE, we provide a practical application as a case study: AI-
assisted UAV Swarm-based UE localization.

The following notations will be used throughout this section.

 𝑋, 𝑁, 𝑌: the RVs for the original data, the noise, and the noisy observations, respectively.
 𝑥, 𝑛, 𝑦 ∈  𝑅𝑃: the realization vector of 𝑋, 𝑁, 𝑌, respectively, whose dimensions are 𝑃.
 𝑃′(< 𝑃): the dimension of the latent space.
 𝑾 ∈ 𝑅𝑃′𝑋𝑃, 𝑾′ ∈ 𝑅𝑃𝑋𝑃′: the weight matrices for encoding and decoding, respectively.
 𝑏 ∈ 𝑅𝑃′, 𝑏′ ∈ 𝑅𝑃: the bias vectors for encoding and decoding, respectively.
 S: the sigmoid activation function for NNs, i.e. 𝑆(𝑎) = 1/(1 + 𝑒−𝑎),
 and 𝑆(𝑎) = ቀ𝑆൫𝑎(1)൯, … , 𝑆൫𝑎(𝑃)൯ቁ

𝑇
 where 𝑎 ∈ 𝑅𝑃 is an arbitrary input vector.

 𝑓𝜃: the encoding function where the parameter 𝜃 is {𝑊, 𝑏}, i.e. 𝑓𝜃(𝒚) = 𝑆(𝑊𝑦 + 𝑏).
 𝑔𝜃′: the decoding function where the parameter 𝜃′ is {𝑊 ′, 𝑏′}, i.e. 𝑔𝜃′(𝑓𝜃(𝒚)) =  𝑆൫𝑊 ′൫𝑓𝜃(𝒚)൯ +

𝑏′൯.
 𝑀: the number of training dataset.
 𝐿: the number of test dataset.

2.2.2 Method of nlDAE
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We first look into the mechanism of DAE to build NNs. Recall that DAE attempts to regenerate the
original data 𝒙 from the noisy observation 𝒚 via training the NN. Thus, the parameters of a DAE model
can be optimized by minimizing the average reconstruction error in the training phase as follows2

𝜃∗, 𝜃′∗ = arg min
1
𝑀

෍ Loss ൬𝒙(𝑖), g𝜃′ ቀ𝑓𝜃൫𝐲(𝑖)൯ቁ൰
𝑀

𝑖=1

, (2-1)

where Loss  is a loss function such as squared difference between two inputs. Then, the 𝑗 - 𝑡ℎ
regenerated data 𝑥෤(𝑗) from 𝒚(𝑗) in test phase can be obtained as follows for all 𝑗 ∈ {1, … , 𝐿}

𝒙෥(𝑗) = 𝑔𝜃′∗ ቀ𝑓𝜃∗൫𝒚(𝑗)൯ቁ. (2-2)

It is noteworthy that the sigmoid function 𝑆 is a nonlinear operation, included in both encoding and
decoding functions in the NN. Thus, the commutative law does not hold in this operation. From this
perspective, we can hypothesize that learning 𝑁, instead of 𝑋, from 𝑌 can be beneficial in some cases
even if the objective is still to reconstruct 𝑋. This is the fundamental idea of nlDAE.

Figure 2.2 Illustration of concept of nlDAE.

The training and test phases of nlDAE are depicted in Figure 2.2. The parameters of nlDAE model
can be optimized as follows for all 𝑖 ∈ {1, … , 𝑀}

𝜃∗, 𝜃′∗ = arg min
1
𝑀

෍ Loss ൬𝒏(𝑗), 𝑔𝜃` ቀ𝑓𝜃൫𝒚(𝑗)൯ቁ൰
𝑀

𝑖=1

. (2-3)

Let 𝒙෥𝑛𝑙
(𝑗) denote the 𝑗-𝑡ℎ regenerated data based on nlDAE, which can be represented as follows for

all 𝑗 ∈ {1, … , 𝐿}

𝒙෤𝑛𝑙
(𝑗) = 𝒚(𝑗) −  𝒏෥(𝑗) =  𝒚(𝑗) − 𝑔𝜃′∗ ቀ𝑓𝜃∗ ൫𝒚(𝑗)൯ቁ. (2-4)

As shown in Figure 2.2 (a), when training the NN using the proposed nIDAE model, the noisy
observation 𝒚 is fed as the input to the encoder and the noise 𝒏 = 𝒚 − 𝒙 is fed as the output of the
decoder. This is different from the conventional DAE model, where the original data 𝒙 is fed as the
output of the decoder. As illustrated in Figure 2.2 (b), when denoising a test data set using the
proposed nIDAE model, we first regenerate the noise (𝒏෥) using the trained nIDAE based NN, then,
the denoised data (𝒙෥𝑛𝑙) is obtained by subtracting the regenerated noise from the noisy data 𝒚 − 𝒏෥ .
In summary, (2-3) and (2-4) contain the core idea of this method.

To provide the readers with insight into nlDAE, we address two simple examples where 𝑌 = 𝑋 + 𝑁 as

                      (a) Training phase                                                    (b) Test phase
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follows:

 First, the objective is to reconstruct 𝑋  from 𝑌  according to the variation of 𝜎𝑁  where
𝑋~Unif൫0,2√3൯, i.e. 𝜎𝑋 is 1, and 𝑁~𝒩(0, 𝜎2𝑁2).

 Second, 𝑋~Exp(1), i.e. 𝜎𝑋 is 1, and all settings are equal to the first example.

As mentioned earlier, the probability distribution of 𝑋 is fixed, and the standard deviation of 𝑁 varies in
these two scenarios. Figure 2.3 describes the performance comparison between DAE and nlDAE in
terms of MSE for the two examples. Throughout this method, the squared error and the scaled
conjugate gradient are applied as the loss function and the optimization method, respectively. Here, we
set 𝑃 = 12, 𝑃′ = 9, 𝑀 = 10000, and 𝐿 = 5000.

Figure 2.3 A simple example of comparison between DAE and nlDAE: reconstruction error according
to 𝜎𝑁.

It is observed that nlDAE is superior to DAE when 𝜎𝑁 is smaller than 𝜎𝑋. This implies that the standard
deviation is an important factor when we choose the denoiser between DAE and nlDAE.

2.2.3 Case study: AI-assisted UAV swarm-based UE localization

To validate the advantage of nlDAE over the conventional DAE in practical problems, we provide an
application in wireless networks: AI-assisted UAV Swarm-based UE localization. The objective of this
case study is to improve the localization quality through denoising the measured distance which is
represented by the quantized value of the mixture of the true distance and error factors.

Consider a 3-D localization where 𝑃 reference nodes and a single target node are randomly distributed.
We estimate the position of the target node with the knowledge of the locations of 𝑃 reference nodes.
For this, let 𝒙 ∈ ℝ𝑃 denote the vector of true distances from 𝑃 reference nodes to the target node where
𝑥 denotes the distance between two random points in a 3-D space. We consider three types of RVs for
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the noise added to the true distance as follows

 𝑁𝑁: ranging error dependent on signal quality.
 𝑁𝑈: ranging error due to clock asynchronization.
 𝑁𝐵: ranging error dependent on signal quality.

We assume that 𝑁𝑁, 𝑁𝑈, 𝑁𝐵 follow the normal, uniform, and Bernoulli distributions, respectively. Hence,
we can define the RV for the noise 𝑁 as follows

𝑁 = 𝑁𝑁 +  𝑁𝑈 +  𝑅NLoS𝑁𝐵,

where 𝑅NLoS  is the distance bias in the event of NLoS. Besides, we assume that the distance is
measured by ToA. Thus, we define the quantization function 𝑄𝐵 to represent the measured distance
with the resolution of 𝐵, e.g., 𝑄10(23) = 20. In addition, the localization method based on multilateration
is utilized to estimate the position of the target node.

In this case study, we consider the discrete values quantized by the function 𝑄𝐵. Here, 𝐱෤𝑛𝑙
(𝑗) can be

represented as follows

𝐱෤𝑛𝑙
(𝑗) = 𝑄𝐵൫𝐲(𝑗)൯ − 𝑔𝜃′∗ ൬𝑓𝜃∗ ቀ𝑄𝐵൫𝐲(𝑗)൯ቁ൰,

where

𝜃∗, 𝜃′∗ = arg min
1
𝑀

෍ Loss ൬𝑄𝐵(𝐧(𝑗)), g𝜃` ቀ𝑓𝜃൫𝑄𝐵(𝐲(𝑗))൯ቁ൰
𝑀

𝑖=1

.

Thus, 𝒙෥𝑛𝑙  is utilized for the estimation of the target node position in nlDAE-assisted multilateration-
based localization.

The performance of the proposed nlDAE is evaluated via 𝐿 = 5000. In this simulation, 12 reference
nodes and one target node are uniformly distributed in a 100 × 100 × 100  cubic. We assume
that N𝑁~𝒩(0,202), NU~Unif(0,20), NB~Ber(0.2), and RNLoS = 50. The distance resolution 𝐵 is set to 10
for the quantization function 𝑄𝐵. For a performance comparison, we select DAE as a conventional
denoiser. We also provide the result of non-ML (i.e., only multilateration-based localization).

Figure 2.4 (a) shows localization error with respect to 𝑃′, where 𝑀 = 10000. The performance of nlDAE
is better than non-ML and DAE for all values of 𝑃′ . Moreover, nlDAE results in higher efficiency
compared to DAE in terms of the required dimension of the latent space.
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Figure 2.4 Localization error.

Figure 2.4 (b) shows localization error with respect to 𝑀, where 𝑃′ = 9. Both DAE and nlDAE show
better performance than non-ML after 𝑀 = 100. In addition, nlDAE shows better performance than DAE
regardless of 𝑀. Furthermore, the localization error converges almost completely for nlDAE when 𝑀 =
100. Hence, we can verify that nlDAE requires less training data than DAE for the localization error.

2.3 Q-learning-based low complexity beam tracking for mmWave beamforming
system

2.3.1 Overview

The mmWave system is a promising candidate for next-generation wireless communication systems,
and vehicular networks [UNM+19, KP20], because it can support high data rates using a huge amount
of frequency resources. However, mmWave systems have disadvantage of high path-loss. To
overcome this problem, a large number of antennas must be used for a sharp beam with a high
beamforming gain, which has a significant impact on the performance of the system by providing
accurate channel direction information. In addition, due to the mobility of MS, beam misalignments
which cause the considerable performance degradation may occur. Therefore, accurate beam steering
angle tracking algorithm is required to prevent the mmWave link from being disconnected when the
channel rapidly varies.

There have been several previous works on estimation and tracking algorithm to get accurate beam or
steering angle for mmWave communication systems. In [ZCH17], Zhu et al. proposed ABP-based angle
estimation algorithm which utilizes adjacent two DFT beams with largest RSS by full beam search, and
it works well in high SNR region. Unfortunately, the full beam search results in a large overhead. Also,
ABP for angle estimation can be incorrectly selected due to noise effect, and serious performance loss
may occur. On the other hand, there have been algorithms based on Kalman filter and its variants. In
[VVH16], Va et al. proposed the conditional beam tracking algorithm based on EKF in mobile mmWave
communication systems. The algorithm needs the received signal which is used as the measurement
of EKF to track the beam steering angle. In our previous work [KHK+19], beam tracking algorithm
combining the ABP with EKF was proposed. Specifically, the modified ABP structure to overcome
incorrect ABP selection was presented, and the metric calculated in the estimation process was used
as the measurement of EKF.

However, there is a critical limitation that these algorithms require the information of dynamic model
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such as state-transition model, covariance of process and observation noise to perform Kalman filtering.
Therefore, these algorithms are unsuitable in realistic environments. In [CCR+20], the Q-learning
approach for beam tracking was proposed. Q-learning is a model-free reinforcement learning algorithm
which utilizes experience, measurement, and reward from the environment by interacting its agent with
the environment. However, inevitable performance loss occurs in Q-learning due to the discretized
action space for tracking the beam steering angle.

In this section, to overcome limitation of prior works, we propose a model-free beam tracking algorithm
which combines Q-learning with modified ABP for practical mobile environments. The proposed
algorithm works in a practical situation without information of the dynamic model. Furthermore, tracking
the continuous beam steering angle is possible by combining high-resolution angle estimator.
Compared to the existing ABP-based angle estimator with full search for ABP selection, the proposed
algorithm has low overhead because it steers only a few beams to perform angle estimation after Q-
learning-based beam tracking. Simulation result shows that the proposed algorithm more accurately
estimates the continuously changing angles than the existing algorithms.

The rest of this section is organized as follows. In subsection 2.3.2, we describe the system model and
time-varying channel model. In subsection 2.3.3, we present an overview of the MABP method, on
which our proposed method relies. In subsection 2.3.4, we propose our Q-learning-based beam tracking
algorithm and finally, in subsection 2.3.5, we present the simulation results.

2.3.2 System model

This subsection describes the mmWave MIMO system model of UL channel in mobile environments,
and its state-space model representation.

Figure 2.5 The mmWave MIMO system with analogue beamforming transceiver structure using single
RF chain.

We consider the narrow band MIMO systems with beamforming transceiver structure using a single RF
chain for easy implementation as shown in Figure 2.5.Error! Reference source not found. The MS
and the BS are equipped with 𝑁 antennas and 𝑀 antennas, respectively. In mmWave MIMO channel,
the paths are limited in sparse direction due to large path loss and highly directional property of high
frequency signals. In this subsection, we consider the mmWave MIMO channel parameterized with path
gain, the AoD at the MS, and the AoA at the BS, at time 𝑘, as follows
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𝐇[𝑘] = ඨ𝑁𝑀
𝐿

෍
𝐿

𝑙=1

𝛼𝑙[𝑘]𝒂𝑟(𝜙𝑙[𝑘])𝒂𝑡
∗(𝜃𝑙[𝑘]), (2-5)

where 𝐿 is the number of paths, 𝛼𝑙[𝑘] is the path gain distributed 𝒞𝒩(0,1), 𝜙𝑙[𝑘] and 𝜃𝑙[𝑘] are the AoA
and AoD of the 𝑙-th path, respectively. 𝒂𝑡(⋅) ∈ ℂ𝑁×1 and 𝒂𝑟(⋅) ∈ ℂ𝑀×1 are the transmit and receive array
response vectors, respectively. We assume a 2D model so that we only consider ULAs with antenna
spacing of half wavelength at both the transmitter and receiver. The array response vector of ULAs at
transmitter is expressed as

𝒂𝑡(𝜃) =
1

√𝑁
൤1, 𝑒𝑗2𝜋

𝜆 𝑑tsin(𝜃) , … , 𝑒𝑗2𝜋
𝜆 (𝑁−1)𝑑tsin(𝜃)൨

T
, (2-6)

where 𝜆 is a wavelength corresponding to the operating carrier frequency, and 𝑑𝑡 is a distance between
the adjacent antenna elements at transmitter. We can rewrite the array response vector at transmitter
by using transmit spatial frequency 𝜇 ≜ 2𝜋

𝜆
𝑑𝑡 sin(𝜃) as follows,

𝒂𝑡(𝜇) =
1

√𝑁
ൣ1, 𝑒𝑗𝜇, … , 𝑒𝑗(𝑁−1)𝜇൧T

. (2-7)

Similarly, the array response vector at receiver can be expressed by using the AoA 𝜙 and receive
spatial frequency 𝜓 ≜ 2𝜋

𝜆
𝑑𝑟sin(𝜙).

Considering an MS with high mobility such as a UAV in the aerial network, we assume that the channel
between BS and MS is dominated by LOS path [SB98]. Therefore, we consider the single path
mmWave channel, i.e., 𝐿 = 1, as follows [KP20, ZCH17, JMC+17],

𝐇[𝑘] = √𝑁𝑀𝛼[𝑘]𝒂𝑟(𝜓[𝑘])𝒂𝑡
∗(𝜇[𝑘]), (2-8)

where the path index is omitted.

Similar to [JMC+17], we adopt a Gaussian process noise model for the AoA evolution over the time,
given by

𝜙[𝑘 + 1] = 𝜙[𝑘] + 𝜉[𝑘], (2-9)

where 𝜉[𝑘]~𝒩൫0, 𝜎𝜙
2൯, and 𝜎𝜙

2 denotes the AoA variation in one time slot. The evolution model for path
gain is given by the first-order Gauss-Markov model

𝛼[𝑘 + 1] = 𝜌𝛼[𝑘] + 𝜀[𝑘], (2-10)

where 𝜌 is the correlation coefficient, and 𝜀[𝑘]~𝒞𝒩(0, (1 − 𝜌)2). The received signal after combining
can be expressed as

𝑦[𝑘] = 𝛼[𝑘] ⋅ 𝑤𝑟
∗𝑎𝑟(𝜓[𝑘])𝑎𝑡

∗(𝜇[𝑘])𝑓𝑡 ⋅ 𝑥[𝑘] + 𝑤𝑟
∗𝒏, (2-11)

where 𝑥[𝑘] is a transmit symbol such that 𝔼[|𝑥[𝑘]|]2 = 1, 𝑓𝑡 ∈ ℂ𝑁×1 is transmit beamformer such that
‖𝑓𝑡 ‖2

2 = 1, 𝑤𝑟 ∈ ℂ𝑀×1 is receive beamformer, 𝒏 ∈ ℂ𝑀×1 is the noise vector where its components 𝑛𝑖 are
independent and 𝑛𝑖~𝒞𝒩(0, 𝜎2). We define the SNR as SNR ≜ 1/𝜎2.
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𝒏~𝒞𝒩(𝟎, 𝜎2𝑰)

2.3.3 An overview of MABP-based angle estimation

The ABP-based angle estimation is explained as follows [ZCH17]. Assuming a narrow band single-path
channel with ULAs equipped at both the transmitter and receiver, each ABP consist of two continuous
DFT-based analogue beams. The full search for all the beams are required by the receiver to
simultaneously estimate the single path AoA. Firstly, the RSSs are calculated for all the beams, from
which two consecutive beams are selected. One has the largest RSS and another has the second
largest RSS. The received signals the two selected beams are derived as

𝑦𝑚
Δ = 𝛼𝒂𝑟

∗ (𝜂𝑚 − 𝛿𝑟)𝒂𝑟(𝜓)𝒂𝑡
∗(𝜇)𝒇𝑡𝑥 + 𝒂𝑟

∗ (𝜂𝑚 − 𝛿𝑟)𝒏, (2-12)

and

𝑦𝑚
Σ = 𝛼𝒂𝑟

∗ (𝜂𝑚 + 𝛿𝑟)𝒂𝑟(𝜓)𝒂𝑡
∗(𝜇)𝒇𝑡𝑥 + 𝒂𝑟

∗ (𝜂𝑚 + 𝛿𝑟)𝒏, (2-13)

where 𝜂𝑚 is the boresight angle of the 𝑚-th receive ABP, and 𝛿𝑟 = 𝜋/𝑁tot is approximates the half of
half-power beamwidth for the receiver as shown Figure 2.6.

Figure 2.6 The mmWave MIMO system with analogue beamforming transceiver structure using single
RF chain.

The RSSs calculated from the received signals of the two beams are derived as

𝜒𝑚
Δ = (𝑦𝑚

Δ )∗𝑦𝑚
Δ    𝑎𝑛𝑑   𝜒𝑚

Σ = (𝑦𝑚
Σ )∗𝑦𝑚

Σ . (2-14)

The ratio metric is defined as

𝜁 =
𝜒𝑚

Δ − 𝜒𝑚
Σ

𝜒𝑚
Δ + 𝜒𝑚

Σ = −
sin(𝜓 − 𝜂𝑚) sin(𝛿𝑟)

1 − cos(𝜓 − 𝜂𝑚) cos(𝛿𝑟) . (2-15)

In [ZCH17], it was proved that 𝜁 is a monotonically decreasing function of 𝜓, and thus there exists an
inverse function. The estimated value of 𝜓 can be recovered by using the inverse function. Although
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ABP-based algorithm has good AoA estimation performance in high SNR region, if the ABP for
estimating angles is incorrectly selected due to the effects of noise, the estimation procedure with fail.
This mismatch occurs frequently at low SNR.

To prevent ABP wrong selection for estimating the AoA near the boundary of ABP probing range, we
use additional ABP in Figure 2.6. Prior to describing additional ABP, we define the estimation trust
region of ABP using the following characteristics of the ratio metric. Therefore, the estimation trust
region of ABP is defined based on the value of ratio metric excluding the boundary region of probing
range as follows,

Ω𝑡𝑟 = ൛𝜁 | 𝜁low ≤ 𝜁 ≤ 𝜁upൟ, (2-16)

where 𝜁low = −𝜁up = −
sinቀ𝛿𝑟

2 ቁsin(𝛿𝑟)

1−cosቀ𝛿𝑟
2 ቁcos(𝛿𝑟)

.

If the value of ratio metric is not in the estimation trust region, i.e., 𝜁 < 𝜁low or 𝜁up < 𝜁, additional ABP,
whose boresight angle is shifted, should be used to estimate the AoA. The conditions for changing the
boresight angle of ABP are as follows

𝜂 = ൜
𝜂𝑚 + 𝛿𝑟 if 𝜁 < 𝜁low
𝜂𝑚 − 𝛿𝑟 if 𝜁up < 𝜁 . (2-17)

By using the modified ABP structure with the condition in (2-17), the AoA to be estimated almost always
exists in the estimation trust region, we can avoid the ABP wrong selection. Therefore, although it may
be necessary to obtain one more RSS of a modified ABP based on the trust region, the performance
degradation of the existing ABP algorithm can be overcome.

Our previous work [KHK+19] is modified ABP structure combined with EKF. However, this algorithm is
based on EKF, and hence it still needs to have information about the dynamic model. Therefore, we
apply the Q-learning to proposed algorithm instead of EKF.

2.3.4 Proposed Q-learning-based beam tracking algorithm

The components of Q-learning for beam tracking are as follows [CCR+20]. The state space is defined
as 𝒮 = {(𝑓𝑛 , 𝑤𝑚), ∀𝑛, 𝑚} , where 𝑛 ∈ {1, … , |ℱ|} , and 𝑚 ∈ {1, … , |𝒲|}  are transmit and receive beam
indices, respectively. The codebooks of transmit and receive beam are denoted by ℱ  and 𝒲 ,
respectively. The action space is defined as 𝒜 = {transmit beam index ± 1, receive beam index ± 1}
which means that the transmit (or receive) beam is changed to adjacent beam. The reward function is
defined as

𝑅𝑘+1 =

⎩
⎪⎪
⎨

⎪⎪
⎧1, if   

|𝑦(𝑛𝑓
(𝑘+1), 𝑛𝑤

(𝑘+1))|2

ห𝑦൫𝑛𝑓
𝑘 , 𝑛𝑤

𝑘 ൯ห2 > 𝑐𝑢

0, if   𝑐𝑙 <
|𝑦(𝑛𝑓

(𝑘+1), 𝑛𝑤
(𝑘+1))|2

ห𝑦൫𝑛𝑓
𝑘, 𝑛𝑤

𝑘 ൯ห2 ≤ 𝑐𝑢  ,

−1, otherwise

(2-18)

where ൫𝑛𝑓
𝑘, 𝑛𝑤

𝑘 ൯, ൫𝑛𝑓
(𝑘+1), 𝑛𝑤

(𝑘+1)൯ are the transmit and receive beam index pair used at time 𝑘 and 𝑘 + 1,
respectively. 𝑐𝑢  and 𝑐𝑙  are the predefined parameters for calculating reward. And received signal
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𝑦൫𝑛𝑓
𝑘 , 𝑛𝑤

𝑘 ൯ is observation at time 𝑘 which can be obtained by probing the transmit beam 𝒇𝑛𝑓
𝑘 and receive

beam 𝒘𝑛𝑤
𝑘  as follows

𝑦൫𝑛𝑓
𝑘 , 𝑛𝑤

𝑘 ൯ = 𝒘𝑛𝑤
𝑘

∗ 𝑯𝒇𝑛𝑓
𝑘 + 𝒏. (2-19)

In (2-18), for example, reward equal to 1 means that the action is taken in the direction of the optimal
beam.

Finally, the process of updating Q-value is given below [SB98]

1. Select an action 𝐴𝑘 from an action set 𝒜,
2. Go to the next state 𝑆𝑘+1,
3. Observe a reward 𝑅𝑘+1 by using observations at time 𝑘 and 𝑘 + 1, and then
4. Update the Q-value as follows

𝑄(𝑆𝑘 , 𝐴𝑘) ← (1 − 𝑝) 𝑄(𝑆𝑘 , 𝐴𝑘)ᇣᇧᇧᇤᇧᇧᇥ
old value

+ 𝑝 ቂ𝑅𝑘+1 + 𝑞 max
𝑎∈𝐴

𝑄(𝑆𝑘+1, 𝑎)ቃᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
new  information

,
(2-20)

where 0 < 𝑝 < 1 is the learning rate (or step size), 0 < 𝑞 < 1 is the discount factor which determines
the importance of future rewards. The Q-value update can be calculated as a weighted summation
between old value and new information in Q-table of which dimension is |𝒮| × |𝒜|.

2.3.4.1 Overall beam tracking algorithm

The overall algorithm to track the beam consists of two phases, and its pseudocode is shown in
Algorithm 2.1. Initially, the beam near the optimal channel direction is tracked by using Q-learning. Then
the modified ABP-based angle estimator is used to enable super-resolution estimation of beam steering
angle.

 Phase 1: Find the beam by using model-free Q-learning-based beam tracking.

 Phase 2: Explore 𝐷 beams on each side of the beam selected in Phase 1, and then select
the beam pair with the largest RSS, and perform modified ABP-based angle estimation.

where the 𝐷 is predefined parameter for additional beam searching.

Although Phase1 can work without information of model in practical scenario, the limitations of the
discretized action and state space which are components of Q-learning, cause the tracking performance
loss. For example, when channels are static, inevitable changes of transmit or receive beam by design
of action space result in poor tracking performance. Furthermore, in a situation when two beam or more
beams have to switch with high mobility, only one beam index switching based on action space cannot
track channel changes. To deal with this, modified ABP-based estimator is used with some additional
overhead in Phase2. Thus, the proposed algorithm can overcome limitation of action space and track
the continuous beam steering angle with high resolution.
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Algorithm 2.1 The proposed beam tracking algorithm.

Comparing overhead between the proposed algorithm and existing algorithms [ZCH17, CCR+20] is as
follows. The overhead is defined as the number of beam steering times required to track beam steering
angle of one side (e.g., AoA). Existing Q-learning-based algorithm [CCR+20] requires (𝑁𝑠) overheads
that make up one episode for beam tracking. On the other hand, the proposed algorithm finds near the
optimal beam based on Q-learning algorithm and performs additional high resolution angle estimation
by using 2𝐷 beams, so (𝑁𝑠 + 2𝐷) overheads are required. However, ABP-based algorithm [ZCH17]
requires (|𝒲|) overheads that is size of codebook due to full beam search.

2.3.5 Simulation results

In this subsection, we evaluate the tracking performance of the proposed algorithm in mobile mmWave
systems. The operating frequency is 𝑓c = 28GHz, and both BS and MS employ ULAs with antenna
spacing 𝑑t = 𝑑𝑟 = λ/2, and the number of antenna at the transmitter and receiver are set to be 𝑁 = 16
and 𝑀 = 16, respectively. Additionally, we use codebooks of transmit and receive beam with sizes of
|ℱ| = 16  and |𝒲| = 16 , respectively. The Q-learning parameters are discount factor 𝑞 = 0.5 , and
learning rate 𝑝 = 0.5, and the number of time steps per episode 𝑁s = 4, and predefined parameter for
additional beam searching 𝐷 = 3. We consider that time-slots is 45ms for beam training period in
outdoor mmWave channel model [RSP+14]. Therefore, the mobility 0.5°  per time-slot is equal to
11.12°/𝑠, as increasing distance between MS and BS, and it can be modelled as a high mobility
environments. Suppose the distance MS and BS is 200m. This model can then be considered to move
the MS at 133.3 km/h, approximately.
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We compare the tracking performance between proposed algorithm and Q-learning-based algorithm
[CCR+20]. In Figure 2.7, we provide the snapshots of the actual angle variation and tracking algorithms.
The actual angle of channel varies according to the aforementioned Gaussian process noise model
with 𝜎𝜙

2 = (0.5)2 at SNR = 20dB. The modified ABP-EKF algorithm [KHK+19] is not applicable because
it needs to know the dynamic model. The existing Q-learning-based beam tracking algorithm can track
the beam near the angle of time-varying channel, but it cannot guarantee that the optimum beam is
always tracked due to the limitation of the discretized action space. Whereas, the proposed algorithm
using modified ABP structure tracks well the actual angle variation. As a numerical example of 𝑁s = 4,
𝐷 = 3  and |𝒲| = 16 , the overheads to track beam steering angle of Q-learning-based algorithm,
proposed algorithm, and ABP-based algorithm are 4, 10, and 16, respectively.

Figure 2.7 The mmWave MIMO system with analog beamforming transceiver structure using single
RF chain. The snapshots of actual angle variation, Q-learning-based beam tracking, ABP-based

beam tracking, and proposed beam tracking. (a) AoD. (b) AoA.

2.4 Autonomous drone coordination for network service resilience: a multi-
agent deep reinforcement learning framework

2.4.1 Overview
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Unpredictable demands of reliable network services have fuelled the need for flexible network
communication supporting systems. Due to recent advances, UAVs, or drones, has begun to be
considered as UE and as mobile BSes supplementing wireless connection to UEs. Taking advantage
of the mobility feature of UAVs, it has been shown that BSes are able to complement the limitation of
terrestrial cellular infrastructures deployed to fixed static locations [OKB+171, SKL192]. BSes facilitate
their mobility to establish LOS communication link with users, ensuring reliable network services. The
on-demand deployments of BSes allows them to continuously change their positions to optimize
connection strength. In particular, when the low transmit power of UEs necessitates closer-ranged
wireless connection, BSes can be effectively deployed to increase network capacity, replenish the
communication coverage, and supplement the surging demands. Moreover, due to the relative low cost
and the possibility of a broad range of applications, BSes are one promising solution in both academia
and industry. However, UAVs are generally insufficiently maintained, causing BSe operations to face
higher safety risks. For example, the engine shutdowns due to collisions with manned aircraft or terrain
[OAE16] can damage the wireless BS's hardware. Moreover, the on-board power of BSes is jointly
consumed by their mobility and communication support functions. To prevent unexpected battery
problems, such as low battery, the power consumption of communication and mobility needs to be
monitored regularly.

In light of this, autonomous BSes management system is crucial in imbuing more robust and resilient
services into BS-based network systems. It is essential to conduct a joint optimization of the energy
consumption and enhance the reliability of the network services despite the uncertain behaviour of UEs
and neighbouring BSes. Recently, a considerable amount of literature has been published on the
optimization of deployment of Bses for cellular services, including the optimization-based coverage
control for transmit power reduction and deployment of BSes considering the uncertainties (e.g.,
demands changes of UEs) [MSB+16], optimal path-planning for multiple BSes to provide wireless
services to the cell edge user based on the convex relaxation technique [CZL+18], the coverage
maximization problem with minimum number of DBS [KYY16].

Even though these previous works show reasonable performance in terms of their objectives, the
solution approaches are all centralized optimization problems. These approaches are impossible to
yield an online (computational) solution for highly dynamic and distributed BS-enabled networks. To
solve the given problem in a distributed manner, ML based approaches are effective under distributed
systems settings. To handle high dynamics of BSes-enabled network (e.g., surging demands of UEs,
malfunction of neighboring BSes, etc.) with high uncertainty and dynamic updates, a new multi-agent
(for distributed computation over BSes) DRL scheme is designed in this study that considers the UEs
and multiple BSes.

Compared to the aforementioned conventional optimization approaches, many ML techniques have
been applied to improve the performance of BS-based communications, including an ML-based
approach for autonomous trajectory optimization of BSes [CYG17] and the optimization of UAV location
in a DL system with a joint K-means and EM algorithm based on GMM [LYC+20], dynamic optimization
of the locations of UAVs in a VLC-enabled UAV based network for minimizing the transmit power
[WCY+19].

Many studies have also applied DRL methods to BSes network systems, including the meta-
reinforcement learning-based path-planning for BSes in dynamic and unknown wireless network
environments [HCS+20] a Q-learning method-based dynamic location planning of UAVs in a NOMA
based wireless network [LQC+19], and the optimization for UAV optimal energy consumption control
considering communication coverage, fairness, and connectivity [LCT+18].

However, these general ML approaches have limitations, and cannot be applied to deterministic multi
BSes decision-making under uncertain environment, thereby leading to undesired outputs. This is
because the aforementioned studies do not consider the BS-based network system's partially
observable multi-agent environment, since each agent has different information, and due to the
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presence of UEs and BSes that cannot fully exchange information.

This underlines the need for further research. In this section, we consider the communication
capabilities between BSes, and the presence of BSes that do not fully exchange information, while
taking into account the uncertainty of deployment environment (especially with respect to BSes
malfunctioning).

Figure 2.8 shows a schematic system that consists of two units (i.e., BSes, UEs). Among BSes, some
of BSes cooperatively exchange information for reliable network services, while uncooperative BSes
do not engage in any exchange of information. Under the uncertainty of BSes operations, such as
unexpected out of power and shutdown, BSes need to autonomously complement the malfunction of
network service. To cope with this problem, it is essential to configure a system where BSes
automatically induce the optimal trajectories and coverage. In this process, the autonomous
optimization system needs to take into account the characteristics of BSes (e.g., on-board battery).

Figure 2.8 CommNet-based ACMS.

In this section, we configure the autonomous network resilience system based on a MADRL scheme,
called CommNet [SSF+16]. The objective of the proposed scheme is to optimize the energy
consumption of BSes and trajectories that strengthen connectivity. The policy has been trained by
adjusting the threshold of coverage overlapped area. We verified that the threshold value is optimal for
network service resilience. To the best of our knowledge, this is the first piece of BS-based autonomous
network management research based on communication-based multi-agent DRL. The main
contributions of this study are as follows

 We propose a new MADRL algorithm that achieves autonomous BSes cooperation in a
distributed BSes context for conceiving an algorithm to estimate the uncertainty of the
environment and to optimize the energy consumption and the overall network reliability and
operation.

 To the best of our knowledge, the autonomous BSes cooperative management system (under
the consideration of BSes that do not fully exchange information) via MADRL has not been
studied yet. Thus the proposed scheme will guide dynamic BS-based autonomous network
resilience studies in the future.

 Through performance evaluation of the proposed CommNet based autonomous BSes
management scheme, we show that the proposed method can succeed in cooperatively
managing distributed BSes.
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2.4.2 Background on deep reinforcement learning

In this subsection, we first present a background on the conventional and modern reinforcement
learning algorithms and their extensions to multi-agent systems. Then, we present the limitations of the
predecessor work in terms of learning in distributed multi-agent cooperation.

In MADRL systems, the agent needs to concurrently observe the effect of its own actions as well as the
behaviour of other agents. This characteristic of the multi-agent system constantly reshapes the
environment and leads to non-stationarity (i.e., it becomes a non-stationary problem). As a result, the
convergence theory of the predecessors is generally not guaranteed in a multi-agent system. Therefore,
the information collecting and processing method should not affect the convergence stability of the
agents in multi-agent systems.

2.4.3 Autonomous drone coordination
2.4.3.1 System description

Suppose that the users, DBSes, and multi-agent cooperative agents are deployed in our considered
target network. We assume a leader DBS agent for handling communications between DBS agents.
The leader DBS agent receives pieces of information for multi-agent cooperation (i.e., mean operation
and distribution) as shown in Figure 2.9.

Figure 2.9 Structure of CommNet.

We assume that every user is associated with only one DBS and each DBS can be associated with
multiple users. Each DBS has MACS to autonomously manage its own communication coverage. The
objective of MACS of DBS is to increase the service population under uncertainty. Our proposed
algorithm should be able to reliably work and achieve network service resilience even in unexpected
situations, e.g., when DBSes malfunction, or when they are dropped, or become energy-exhausted
[ZPR+16].  At the same time, each DBS tries to optimize energy consumption, in order to combat the
power-hungry nature in DBS.
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Each DBS has a maximum battery capacity. Moreover, each DBS has a maximum coverage range.
Energy consumption relatively varies depending on the current coverage range. Since the
communication coverage depends on the energy consumption, each user communicates with the
nearest drone in order to save its own energy. Each user, by communicating with the nearest DBS, can
achieve low-latency and high-speed communication. The locations of users are time-varying.

2.4.3.1.1 State space

The state space of the ACMS for DBSes consists of location information, status information (e.g., the
amounts of energy consumption, communication coverage range, etc.), and relative position
information with other users/DBSes.

It should be noted that each DBS agent can observe only the past and current pieces of information,
whereas future information is not observable. Moreover, the observations of other DBS agents are not
necessary for cooperation in this proposed MADRL scheme. Thus each DBS agent learns how to
cooperate using the partially observable information and past experiences in unknown future states.

Figure 2.10 Drone Coordination.

2.4.3.1.2 Action space

The action space of the ACMS consists of eleven discrete actions, i.e., eight actions are for moving
actions ± 𝛼  in 𝑥  direction, ± 𝛼  in 𝑦  direction, or ± 𝜎  in both 𝑥  and 𝑦  direction, and the other three
actions are for controlling the coverage range 𝑅𝐶 ± 𝛽 , where current position is (𝑥, 𝑦)  and
communication coverage range is 𝑅𝐶. The illustrative description for this action space is as shown in
Figure 2.10.

2.4.3.1.3 Reward

The reward space of the ACMS is classified into two groups, i.e., DBS rewards and cooperation
rewards, respectively.
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 DBS Reward. For defining the rewards in DBSes, we have to address three different
parameters, i.e., energy consumption, battery discharge, and the number of users. The DBS
agent has the power-hungry nature; thus the energy consumption model of DBS agent is
required. The energy consumption of the DBS consists of two parts, the propulsion energy
consumption and the communication related energy consumption. First, we define the energy
consumption model, which includes the propulsion and communication energy, of DBS
agents as negative reward. Seconds, the negative reward for the battery discharge 𝑟𝑏

𝑘 is
defined as the aviation status of DBS agent, which depends on its remaining energy. Finally,
the reward for the utilization rate is defined as the ratio of users in the current coverage to
the number of users when the coverage is maximized.

 Cooperation Reward. In order to define the rewards for the cooperation among DBSes, we
have to address the following three different cases, i.e., the overlapped area among DBSes,
and the number of users. We propose the overlapped threshold, 𝜔𝑡ℎ , for reward of the
overlapped area among DBSes. The reward of the total utilization rate is defined as the ratio
of the number of users who use the service and total number of users.

2.4.3.2 Algorithm for learning cooperation

The DBS agents of MACS are connected to users and other DBSes. Through communications with
DBSes and other DBS agents, the autonomous DBS coordination scheme tries to learn how to maintain
the network services under uncertainty. The proposed MACS scheme considers multi-agent system,
so CommNet, a representative communication based MADLR algorithm, is applied. In CommNet, each
agent uses only its observable state as shown in Figure 2.9. Note that the communication structure of
CommNet makes convergence stable, even in a multi-agent system. CommNet maps the states of all
agents to their actions. Note that conventional CommNet considers a central server that collects pieces
of information of agents and distributes processed information. That is, each agent has access to a
central server to share information. However, we randomly select one of the DBS agents as the leader
DBS. This leader collects and distribute information. Each DBS agent sends its embedded state
information to the leader DBS. The leader DBS collects the embedded information, and averages all of
the received embedded messages. After that, the averaged message is taken as the input of the next
layer. For other DBS agents, the leader DBS sends the averaged message to other DBS agents. The
final output layer determines the agent's action. Here,  𝑧 ∈ {0, . . , 𝑍} , where 𝑧  is the number of
communication steps. For each hidden layer, the activation function takes two input vectors for each
DBS agent/the hidden state ℎ𝑘

𝑧  and the communication vector. The softmax activation function is placed
at the output layer. We can, then, interpret the output of the softmax function as the probability that each
action is taken when the DBS agent observes state. We use the actor and critic reinforcement learning
model based on CommNet.

2.4.4 Performance evaluation
2.4.4.1 Simulation setup

In this subsection, we numerically analyse the performance of the proposed ACMS scheme.

By default, we consider a 2 -dimensional 16 × 16  grid map, 25  randomly distributed users, 3
uncooperative DBSes, and 4 multi-agents system based DBS agents. We assume each episode has a
total of 256 time steps. We configure a two-layered NN structures of ACMS as follows. In the first layer,
the number of nodes is 512. The second layer also has 512 nodes. The hyperbolic-tangent function and
ReLU function are used as each layer's activation function, respectively. A Xavier initializer is used for
weight initialization. We use Adam optimizer. In the training procedure, 𝜖-greedy method is used to
make the DBS agents experience a variety of actions.

In ACMS dynamic environment, the network connectivity of users continuously changes as the status
of uncooperative DBSes changes unpredictably (e.g., drop, coverage reduction, etc.).  We investigated
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the convergence of ACMS and its benchmark schemes. We assumed that the DBSes, but not the
agents, have all malfunctioned, or are energy-exhausted. The DBSes transfer the latest locations. Every
episode starts with randomly spreading agent DBSes on the grid. Each DBS is then randomly assigned
a specific area of interest which is the last location left by DBS. In order to provide an optimal network
service, which is the common goal of agent DBSes, they must provide the best network for each area.
In order to observe how the overlapping ratio of the coverage affects the entire network, experiments
were conducted on 𝜔𝑡ℎ = 0.1, 𝜔𝑡ℎ = 0.2, 𝜔𝑡ℎ = 0.3 , 𝜔𝑡ℎ = 0.4 , 𝜔𝑡ℎ = 0.5, and 𝜔𝑡ℎ = 0.6, where 𝜔  is
the overlap ratio for coverage.

Figure 2.11 Reward tendency of untrained and trained DBS agents in autonomous DBS cooperation
scheme. Reward is sum of four DBS agents’ reward. 𝜔𝑡ℎ affects reward which agents receives during

training procedure.

Figure 2.12 The number of connected users served by the trained DBS agents. Users are randomly
distributed and move uncertainly, requiring the DBS agents to cooperatively find the optimal position
and coverage range for reliable connectivity. There are four DBS agents with 15 randomly distributed

users. Each line shows the summation of four DBS agents’ rewards.
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Figure 2.13 DBS agents behaviours. 𝜔𝑡ℎ (overlapped threshold) affects the behaviour of DBS agents
during the training procedure; circles depict the coverage range of each DBS agent and the centres of

circles represent the position of each DBS agent

2.4.4.2 Simulation results

In the following, we investigate the reward convergence, network resilience, and trained behaviour of
the proposed schemes, for a different overlapped threshold.

Reward convergence. We study the impact of overlapped threshold on the reward convergence.
Figure 2.11 shows the reward flow for one episode of trained or untrained DBS agents. With 𝜔𝑡ℎ = 0.1,
the proposed autonomous DBS cooperation scheme achieves an average of about −4.5 rewards per
episode. With 𝜔𝑡ℎ =  0.2, the proposed scheme achieves an average reward of about −4 units per
episode. Similarly, with 𝜔𝑡ℎ = 0.3 the proposed scheme achieves an average reward of −3.5 units per
episode. The results of these experiments achieve a relatively low average value compared to the
rewards shown in Figure 2.11 (g--l). The overlapped threshold 𝜔𝑡ℎ leads DBS agents to learn behaviour
which reduces the overlapped coverage range. So the trained DBS agents mainly consider overlapped
coverage range, not the number of reliably connected users. As shown in Figure 2.13 (a--c), the DBS
agents keep as much distance as possible and avoid overlapping coverage ranges. Therefore, during
an experiment episode, an average of −4  for three experiments is achieved. With 𝜔𝑡ℎ = 0.4 , the
proposed scheme achieves an average reward of about −0.7 units per episode. With 𝜔𝑡ℎ = 0.5, the
proposed scheme achieves an average reward of about −0.5 units per episode. With 𝜔𝑡ℎ = 0.6, the
proposed scheme achieves average reward of about −0.2 units per episode. The relatively high
overlapped threshold 𝜔𝑡ℎ makes DBS agents learn behaviour which mainly focus on the number of
reliably connected users. As such, the trained DBS agents does not focus on the overlapped area. As
shown in Figure 2.13 (d--f), the DBS agents select a location where it can communicate with a large
number of users rather than maintaining a distance from each other, and select a coverage range that
can provide communication services to as many users as possible. Figure 2.13 shows that the optimal
position and coverage cannot be determined, which shows that the reward continuously repeats up and
down randomly, in the case of the non-trained model.

Network resilience (User connectivity). We study the impact of 𝜔𝑡ℎ(overlapped threshold) on the
number of users connected to DBS agents for network resilience. The DBS agents find the optimal
position and coverage range for users who do not receive the network services. Figure 2.12 shows the
number of users who provide services while adjusting optimal position and coverage during one episode
by trained DBS agents. When 𝜔𝑡ℎ = 0.6, the DBS agents move and control the coverage range to
provide services to a total of 16 users, to 13 users when 𝜔𝑡ℎ = 0.5, and to 9 users when 𝜔𝑡ℎ = 0.4. This
is the result of actions that focus on the number of users connected to DBS agents, rather than
considering the degree of overlap of coverage between DBS agents when the overlapped threshold
𝜔𝑡ℎ value is large. As shown in Figure 2.13, these characteristics of DBS agents are clearly shown
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when 𝜔𝑡ℎ = 0.4 or higher. When 𝜔𝑡ℎ = 0.3,  the DBS agents move and control the coverage range to
provide services to a total of 10 users. When 𝜔𝑡ℎ = 0.2 DBS agents move and control coverage range
to provide services to a total of 5 users. When 𝜔𝑡ℎ = 0.1 DBS agents move and control the coverage
range to provide services to a total of 7 users. Compared to the 𝜔𝑡ℎ = 0.4, 0.5, and 0.6 relatively small
𝜔𝑡ℎ values lead DBS agents to focus on avoiding overlap of each other's coverage range. As a result,
even when DBS agents can provide network services to more users, the agents maintain a minute gap
between DBS agents while not increasing their coverage range.

Behaviour pattern analysis of DBS agents. Figure 2.13 shows how the trained DBS agents adjust
the optimal location and coverage over time. When 𝜔𝑡ℎ is set to 0.1, DBS agents move to the position
where there is a relatively small overlapped area. At the same time, DBS agents provide services to as
many users as possible and control the coverage range with the smallest overlap. As shown in Figure
2.13 (a), the DBS agents maintain the smallest average radius size among other cases. Similarly, when
𝜔𝑡ℎ = 0.2, DBS agents move and control the coverage range for reducing the overlapped area. As
shown in Figure 2.13 (b), DBS agents maintain a wider coverage than the case in Figure 2.13 (a). When
𝜔𝑡ℎ = 0.3, DBS agents also find the position where the agents can control the coverage range for
reducing the overlapped area. However, as shown in Figure 2.13 (c), the DBS agents allow some
overlap between the green coverage and the purple coverage. When 𝜔𝑡ℎ = 0.5, the DBS agents allow
some overlap in the coverage range. Instead, DBS agents focus more on the number of connected
users, so the rewards DBS agents receive is relatively higher than the aforementioned cases (i.e., 𝜔𝑡ℎ =
0.1, 0.2, 0.3, and 0.4). When 𝜔𝑡ℎ = 0.6, the DBS agents, unlike the previous cases, have a coverage area
that overlaps about half of the coverage range. However, as shown in Figure 2.11, the DBS agents
offset the rewards lost due to the overlapping coverage by the number of connected users. The DBS
agents do not focus on reducing the overlapped area, but the position that increases the number of
connected users.

2.5 Summary

This chapter studied the technologies, algorithms, and methodologies used in UAL localization and
coordination. More specifically, we studied three problems in this area, namely, the nlDAE, Q-learning
based beam tracking, and autonomous drone coordination based on MADRL.

In section 2.2, we introduced a new denoiser framework based on the NN, namely nlDAE. nlDAE is a
modification of DAE in that it learns the noise instead of the original data. The fundamental idea of
nlDAE is that learning noise can provide a better performance depending on the stochastic
characteristics (e.g., standard deviation) of the original data and noise. We applied the proposed
mechanism to the problems in wireless networks such as symbol demodulation and precise localization.
The numerical results support that nlDAE is more effective than DAE in terms of the required dimension
of the latent space and the number of training dataset. Applicability of nlDAE to other domains, e.g.,
image inpainting, remains as a future work. Furthermore, information theoretical criteria of decision
making for the selection between DAE and nlDAE is an interesting further research.

In this section 2.3, we proposed the model-free beam tracking algorithm for practical environments
without information of dynamic model. Compared to Kalman filter-based beam tracking algorithms,
which require the information of the dynamic model, the proposed algorithm is based on model-free Q-
learning. Also, we confirm that the proposed algorithm tracks the time-varying directional angle of
channel with high resolution. In addition, compared to the conventional ABP-based estimation scheme
that requires full beam search, the proposed algorithm requires only a few beam searches with low
overhead.

Finally, we proposed an autonomous DBSes cooperation scheme based on communication DRL in
section 2.4. The proposed scheme offers a promising solution to find optimal trajectories in the operating
area and network coverage control of DBSes that can cover as many users as possible. Simulations
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have shown that the proposed algorithm outperforms the single DRL schemes. Through the data-
intensive evaluation, it is confirmed that the proposed method achieves desirable performance.
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3 Data and service

3.1 Overview

One of the most important class of solutions that AI-based edge computing encompasses are complex
AI algorithms that deal with and solve the problem of scarcity of computational and/or communication
resources through relying on external computational or data cash sources. We refer to the first case,
where computation is offloaded as the service, and the second case, where data is handed over as the
data. Figure 3.1 shows the schematic of a drone which relies on external data sources and
computational power for its operation.

Figure 3.1 Schematic of a UAV offloading computation and relying on external caches for data.

In subsequent sections of this chapter we design computation offloading and task allocation schemes.
First, we consider a centralized approach for firefighting scenarios, and then a decentralized one in
adversarial environments. After that, we study dynamic video delivery in wireless caching networks
using MDP.

In general, there are two different approaches that can be adopted for computation offloading,
a centralized approach and decentralized one. The centralized approach relies on a single central
decision-making engine where intelligence is set up using massive data obtained from heterogeneous
sources. The decision is determined in a centralized manner after analysing the data, and
communicated back to the source nodes for the required action. On the other hand, the decentralized
approach allows the associated algorithm to run on the edge devices, i.e., autonomous vehicles or
drones, meaning that the operations of data processing, knowledge extraction and decision-making are
locally executed. In the following, two works are introduced, the first, called FlexSensing, is a centralized
task offloading decision making algorithm presented in section 3.2, while the second is about
decentralized task offloading decision making which is introduced in section 3.3.

Finally, section 3.4 addresses an IoV network that utilizes a D2D underlaid cellular system, where
distributed caching at each vehicle is available and the video streaming service is provided via D2D
links. Since wireless link activation for video delivery could introduce delays, node association is
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determined in a larger timescale compared to power allocations. We jointly optimize these delivery
decisions by maximizing the average video quality under the constraints on the playback delays of
streaming users and the data rate guarantees for cellular vehicles. For each cache-enabled vehicle, the
expected cost is obtained from the stochastic shortest path problem that is solved by DRL without the
knowledge of global CSI. Specifically, the DDPG algorithm is adopted for dealing with the very large
state space, i.e., time-varying channel states. Simulation results verify that the proposed video delivery
algorithm achieves all the given goals, i.e., average video quality, smooth playback, and reliable data
rates for cellular vehicles.

3.2 FlexSensing: QoI and latency aware task allocation for firefighting
3.2.1 Overview

In intelligent fire-fighting scenario, drone-based visual crowdsourcing has become an emerging
computing paradigm that utilizes the images/video collected from drones to monitor the fire [ZPXY+18].
In a fire fighting scenario, the locations and the spread of fire in the building can be determined through
visual-based crowdsourcing. To accurately determine the spread of fire in a timely manner, a widely
adopted approach is to frequently collect high-quality visual data from dense measurement points.
However, collecting and processing a large amount of visual data from moving drones requires a
tremendous amount of communication and computing resources. In addition, latency constraints on
time-sensitive information extraction require moving the computing resources closer to where the data
is generated.

In order to solve these problems, we propose FlexSensing, a task allocation scheme that jointly
optimizes the QoI and the processing latency in the case of drone-based visual crowdsourcing. Here,
the QoI measures the amount of information extracted from the collected data and depends on the
context of the data collection, such as the position, orientation, and velocity of the cameras. In this
section, we take object detection as an example of a visual-crowdsourcing-based application and
calculate the QoI as the number of pixels covering the targeted objects in each image.

In the following, we defined some useful terms

1. VFNs: The computing nodes carried by moving firetrucks with vehicle-to-everything (V2X)
capacities. In FlexSensing, the VFNs are responsible for visual data processing.

2. Service zones: We divide a fire site into service zones of the same size based on the locations
of the BSes. The BS located in the centre of each zone is selected to coordinate all the VFNs
within the zone. We call the coordinator the zone head. With the existing cellular registration
mechanisms, drones and VFNs always inform the zone head when they enter or leave the
zone. In addition, VFNs periodically report their moving directions, locations, and available
computing and communication resources to the zone head.

3. Data collectors: In FlexSensing, we assume that all drones are equipped with dash cameras
and V2X modules. In a fire-fighting scenario, the severity of fire can be monitored by collecting
and analysing the visual data captured by cameras installed on the drones. We consider any
drones whose view covers a specific target of interest to be a data collector.

4. Crowdsourcing tasks: We define two types of crowdsourcing tasks in FlexSensing: visual
data collection and real-time data processing. To monitor the fire, the zone head periodically
assigns crowdsourcing tasks to VFNs within the service zone. More specifically, the visual data
captured by data collectors within the service zone are transferred to the selected VFNs through
V2V connections and processed there in real time.

5. VFN workload: The workload of a VFN can be estimated by the number of drones within the
communication range.

6. Processing latency: The larger the amount of data and the higher the rate of data collection
is, the greater the number of computing resources required to process the data. We assume
that multiple processes can be run in parallel on each VFN and that the number of parallel
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processes depends on the number of tasks to be processed simultaneously. Furthermore, the
parallel processes are allowed to share CPUs and other system resources. Therefore, with a
limited number of computing resources, the larger the number of processes running on the VFN
is, the smaller the number of computing resources allocated to each process and the longer
the execution time for each process. In FlexSensing, we use processing latency to denote the
average executing time of processes running on the VFN.

7. Data collection rate and QoI of data: To accurately sense the targets of interest in a timely
manner, a widely adopted approach is to frequently collect high-quality visual data from dense
measurement points. In FlexSensing, we evaluate the frame rate selected for transferring the
visual data as a metric of the data collection rate. Depending on the velocity, orientation and
position of the drones in question, the QoI, which depends on the quality and content of the
collected visual data, varies. The definition of QoI is application specific. In this work, we choose
object detection as a typical computational task. In this case, we propose measuring the QoI of
crowdsourced visual data by using the number of pixels covering the targets of interest in each
image frame. In practice, when the camera is closer to the target, or when the resolution is
higher, the number of pixels covering the targets of interest is expected to increase.

8. System reward: In FlexSensing, the QoI is highly likely to increase when more data is
collected, whereas the processing latency will also increase with the data collection rate. To
address the balance, we define a system reward, which decays along with the processing
latency and increases with the QoI. In FlexSensing, the system reward unifies the processing
latency and the QoI and can be tuned according to application-specific requirements. For
example, if an application running on VFNs is more latency sensitive, the system reward will be
more heavily weighted in favour of the processing latency, and vice versa.

3.2.2 VFN System

To provide low-latency processing for the collected visual data, we propose applying the concept of
VFC [XZ+17]. More specifically, we propose turning fire trucks into VFNs equipped with CPU/GPU and
V2X modules capable of handling computation and communication and utilizing these nodes for
processing the visual data collected from drones within the range of a single hop. We select fire trucks
as carriers of VFNs thanks to their large size and sufficient power supply.

The core idea of FlexSensing is to minimize the data collection rate for each sensing drone in the target
area and to optimize the task distribution among VFNs to reduce the processing latency without
degrading the QoI. We leverage the double DQN to solve the problem as described below.

First, we evenly divide a fire site into service zones with a cellular BS in the centre [ZPYLY+18]. The
BS is configured as the coordinator of the service zone and runs a DQN agent. Second, we simulate
the workload of VFNs based on the spatiotemporal distribution of surrounding drones, with the
assumption that the VFN workload is proportional to the density of surrounding drones. In the initial
stage, the DQN agents assign processing tasks to VFNs and select the data collection rate for each
sensing drone (i.e., data collector) in a random manner. Based on the learned variation pattern in the
workload of VFNs and the observed results of past decisions, the DQN agents gradually learn and
update the task allocation strategies (i.e., the frame rate of data collection for each sensing drone and
the computing tasks assigned to each VFN) toward specific application demands. Notably, the learning
process is purely based on experience, without any predefined rules.

3.2.3 DQN approach

Owing to the complexity of the fire-fighting scenario (e.g. high mobility of drones), achieving complete
knowledge of the drones and CFNs is impractical. In recent years, double DQN has shown substantial
potential in terms of supporting a broad range of complex compelling applications [VGD+15]. To
maximize the QoI and reduce the processing latency on VFNs, we adopt the DQN framework. In this
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subsection, we first introduce the basic components of DQN. Then, we illustrate the methodology for
seeking the optimal task allocation strategy via the DQN.

1. State space: We consider the practical online scenario where data collectors and VFNs enter
and leave a specific service zone dynamically. Within a specific decision epoch 𝑗, we assume
that the numbers of VFNs and drones involved remain the same. The state of an individual data
collector includes the geographical information (e.g., location, speed and direction) and the
configuration of its dash camera (e.g., effective range and FoV). Similarly, the state of a VFN
consists of geographical information as well as the number of neighbouring drones. We use
(𝑥𝑡 , 𝑦𝑡)  to denote the location of a potential are of interest. If we allow the system to
simultaneously assign data collectors, the action space increases exponentially with the
increase of the data collectors. In such a case, it is extremely difficult for the model to converge
during training. Hence, we make the state information set disjoint by splitting the data collector
set. Specifically, we divide the state at a decision epoch into substates, where one and only
one data collector's information is included in a substate.

2. Action space: As earlier stated, the zone head makes a joint control command (𝑐𝑤 , ℎ𝑤) for the
data collector at decision epoch j, in which 𝑐𝑤 = 𝑣 indicates that the data collector w transfers
its visual data to VFN 𝑣 under a frame rate ℎ𝑤. With a higher frame rate, the number of pixels
covering the targets of interest in the collected images will increase, and the computational cost
will grow.

3. Task allocation strategy: A task allocation strategy 𝜙  is defined as a mapping. More
specifically, the zone head determines a joint control command for a data collector according
to 𝜙 after observing the network state at the beginning of each decision epoch 𝑗.

4. System reward: When applying joint actions to the state, an immediate system reward at
epoch 𝑗 is received to quantify the task allocation experience for the system. We have two
objectives, i.e., maximizing the QoI (in terms of the total number of pixels covering the targets
of interest during object detection) while reducing the average processing latency. The reward
is defined as follow

𝑢 = 𝜎𝑄 + (1 − 𝜎)𝑃,

where 𝑄 refers to the Qol and 𝑃 refers to the processing latency, and 𝜎 ∈ [0,1] is a scalar
weight.

3.2.3.1 Methodology

In our scenario, given continuous values of the geographical information of drones and vehicles (e.g.,
location, velocity and direction) and VFN computing resource usage, there is an infinite number of state-
action pairs [ZCXJ+20]; thus, the double DQN based algorithm approaches the optimal task allocation
strategy by storing the state-action pairs as the adjustable parameters of the NN 𝜎. As shown in Figure
3.2Error! Reference source not found., 𝜎 denotes a vector of parameters associated with the DQN.



Project No 815191

Date 12.01.2021

D4.3 Final report on AI-assisted networking and edge computing Dissemination Level (PU)

https://primo-5g.eu/  - @PriMO5G 43

Figure 3.2 DQN Approach.

Figure 3.3 illustrates the flow of data in DQN algorithm. The agent in the zone headfirst observes its
current state, and performs a set of joint actions. Then, the agent observes the subsequent state and
receives an immediate utility. The value of Q-function would be adjusted using a time-varying learning
rate.

Figure 3.3 Flowchart of DQN algorithm.

To store the experience state, we assume that each zone head is equipped with a replay buffer of finite
size 𝑀. As illustrated in Figure 3.3, we use 𝑚𝑗 to denote the transition between two adjacent decision
epochs 𝑗 and 𝑗 + 1, and the set 𝑀𝑗 denotes the experience pool at decision epoch 𝑗 during the learning
process. A policy DQN and a target DQN are maintained in the zone head, where σ𝑗 represents the
parameters at decision epoch 𝑗

𝐿(𝛿𝑗) = 𝔼൫𝑋,𝑌,𝑢(𝑋,𝑌),𝑋′൯∈𝑀෡𝐽 ൥ቆ(1 − 𝛾) ⋅ 𝑢(𝑋, 𝑌) + 𝛾 ⋅ 𝑄 ቀ𝑋′, max
𝑌

Ω (𝑋′, 𝑌′; 𝛿𝑗); 𝛿̂𝑗ቁ − 𝑄(𝑋, 𝑌; 𝛿𝑘)ቇ
2

൩. (3-1)

At each decision epoch, according to the experience replay technique, the zone head randomly samples
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a batch from the experience pool to train the DQN. In the training process, a loss function is defined in
(3-1). By deriving the loss function with respect to 𝜎𝑗, the parameters σ𝑗 in the policy DQN are updated
toward minimizing the mean-squared measure of equation error as shown in (3-1) at decision epoch 𝑗.
The agent in the zone head regularly resets the target DQN parameters with the updated parameters
in the policy DQN.

3.2.4 FlexSensing

The FlexSensing procedure is illustrated in Figure 3.4. Once a crowdsourcing task arrives, the zone
head first collects the information of the data collectors and VFNs within the service zone. The
geographic information of the involved drones, such as the location, velocity and moving direction, are
collected and gathered at the zone head. The VFNs are also required to report their workload
information.

Figure 3.4 FlexSensing in a fire-fighting scenario.

Based on the collected information, the zone head learns and updates the task allocation strategy, in
which each data collector in the service zone is asked to transmit the camera-captured visual data to a
selected VFN with a proper frame rate. Although desirable, it is challenging to achieve an optimal task
allocation strategy due to the massive scale of data collectors, diversified variation of the VFN workload,
and uncertain movement of drones. To this end, we make effective use of the double deep DQN to
tackle the key challenges therein. The zone head maintains a DQN agent, which has no prior knowledge
in the beginning, but progressively learns to optimize the task allocation strategy based on the
experienced performance.

Once the task allocation strategy is confirmed, each data collector tries to build a V2V connection with
the selected VFN and starts to transmit the visual data at a specific frame rate. Once a frame is
completely transferred, the VFNs process it in real time using object detection technologies (e.g., CNN).

Due to the mobility of vehicles, VFNs may leave the current service zone and enter another one before
a frame is completely processed. In this case, the VFNs report the results to the new zone head, who
then hands over the results to the previous one through the X2 interface in LTE/LTE-A.
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3.3 Decentralized offloading decision making in adversarial environment
3.3.1 Overview
In disaster scenarios, network coverage constitutes a fundamental requirement for rescue operations.
In such scenarios, however, connectivity might not be available due to damage to the terrestrial
infrastructure or an excessive signalling load. Many emergency scenarios are characterized by the
absence of an entity performing a data collection process and making the optimal decision in decision-
making contexts. In this sense, it is necessary to design a distributed decision making algorithm which
enables to adapt to dynamic and uncertain environments through interaction among nodes nearby. To
do this, available computing resources of moving nodes can be supplemented to act as components of
fog computing networks [XZ+17]. As the integration of fog computing and moving nodes, moving fog
computing makes use of moving nodes' resources to promote the computational capability as well as
further lower the delay of fog computing, so that the nodes are not only resource-consumers but also
resource-providers. VFC forms a network where various types of drones with enough resources and
good connectivity may become fog nodes to handle computational task offloading requests generated
by neighbouring drones.

There are numerous distributed VFNs specifications, location, availability, and reputation and thus the
service may have diverse preferences towards them. Due to non-random channel fluctuations and
unpredictable variability of the system in VFC-inherited heterogeneous and dynamic environment,
stochastic-based assumption makes the computational task offloading decisions less practical, i.e.,
obtained target states no longer exist, either static, in the fixed, smoothly or abruptly varied mean.
Moreover, exchanging system state information between the task offloading requester and fog nodes
causes high signalling overhead, and such a state is difficult to predict, so that the clients have no idea
in prior which fog node perform the best performance and the advantage of VFC is nullified.

In view of the above, a drastic change is needed towards adaptive learning-based decision-making
scheme. This work is to design a task offloading strategy addressing the challenges of computation-
intensive applications in dynamic and uncertain environments, e.g., immersive video service or image
recognition in firefighting scene, or infrastructure-less offloading service in future IoV, such as
emergency D2D based offloading service.

3.3.2 Volatile scenario

We consider a VFC system, where two different types of vehicles are involved in V2V task offloading:
resource requesting vehicle and VFC node. The resource requesting vehicle generates tasks and
requests resource for the offloading service, while VFC nodes have sufficient computing resource and
provide computing service. The resource requester interacts with accessible VFC nodes and may
offload a task to a promising VFC node in a candidate set within its access region. Due to inherent
mobility, a candidate VFC set may be different in different time instance. For example, a VFC node
appears in a candidate set at different time instance, or leaves a candidate set temporarily but return
into the set in a finite number of rounds.

3.3.3 Adversarial MAB approach

Considering joint perturbations in two sub-process, i) assessment stage and ii) choice stage, in
adversarial environment would achieve improved exploitation-exploration balance [CL+06], resulting in
better individual performance. The former is about capability domain, i.e., how to design a learning rule
such that each client uses it to gain knowledge on service capability, while the latter is about the
suitability domain, i.e., how to make a fog node selection better suited for the next task with time-varying
size. Each resource requester assesses and learns the service capability of candidate resource
providers, i.e., the estimation of service cost, in order to optimize the expected service cost. The service
capability of a fog node is represented by the cost per bit for the previous task.
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However, the potential service capability may not ensure its envisioned suitability for the upcoming task,
due to time-varying input data. For example, when the input data size for the next task is small enough,
one may try to explore more. Because, even if a poorly performed fog node is selected, the cost for the
task with a small size is not excessive. One may try to exploit more with large size. In this sense, more
suitable resource selection could be achieved by considering the input data size for the upcoming task,
which would address the resource demand dependent exploration-exploitation trade-off. For this
reason, one may consider soft-max process [AL+17] in the choice rule of learning scheme with a weight
factor normalizing input data size.

Note that the normalized input data size value in the soft-max process plays an important role in making
the high selection probability higher and the low selection probability lower, i.e. exploiting more for the
larger task workload, while exploring more for the smaller one. One issue is that the soft-max process
does not consider the uncertainty of the estimated cost and thus may draw sub-optimal arms too much,
which may cause undesired outcomes, i.e., unbalanced exploration-exploitation trade-off and highly
unstable/inaccurate individual performance. We circumvent the issue by considering algorithmic
robustness for which bounded properties on estimation are used.

3.4 MDP for dynamic video delivery in wireless caching networks
3.4.1 Markov decision process

MDP is an optimization model for decision making under uncertainty [B57, P94]. It describes a
stochastic decision process of an agent interacting with an environment or system. At each decision
time, the system stays in a certain state 𝑠 and the agent chooses an action 𝑎 that is available at this
state. After the action is performed, the agent receives an immediate reward 𝑅 and the system transits
to a new state 𝑠′ according to the transition probability [AHN+15]. The MDP model is used for solving
various design and resource management issues in WSNs. For WSNs, the MDP is used to model the
interaction between a wireless sensor node (i.e., an agent) and their surrounding environment (i.e., a
system) to achieve some objectives [AHN+15].

The MDP is defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝑇) where, 𝑆 is a finite set of states, 𝐴 is a finite set of actions,
𝑃 is a transition probability function from state 𝑠 to state 𝑠′ after action 𝑎 is taken, 𝑅 is the immediate
reward obtained after action 𝑎 is made, and 𝐹 is the set of decision epoch. Policy 𝜋 is a mapping from
a state to an action. The goal of MDP is to find an optimal policy to maximize or minimize a certain
objective function. The MDP can be finite or infinite time horizon. For the finite time horizon MDP, an
optimal policy 𝜋* to maximize the expected total reward is defined as follows

max 𝑉𝜋(𝑠) =  𝔼𝜋,𝑠 ൥෍ 𝑅൫𝑠𝑡
′ห𝑠𝑡 , 𝜋(𝑎𝑡)൯

𝑇

𝑡=1

൩,

where 𝑠𝑡 and 𝑎𝑡 are the state and action at time 𝑡, respectively. For the infinite time horizon MDP, the
objective can be to maximize the expected discounted total reward or to maximize the average reward.
The former is defined as follows

max 𝑉𝜋(𝑠) =  𝔼𝜋,𝑠 ൥෍ 𝛾𝑡𝑅൫𝑠𝑡
′ห𝑠𝑡 , 𝜋(𝑎𝑡)൯

𝑇

𝑡=1

൩,

while the latter is expressed as follows

max 𝑉𝜋(𝑠) = lim inf
𝑇→ ∞

1
𝑇 𝔼𝜋,𝑠 ൥෍ 𝛾𝑡𝑅൫𝑠𝑡

′ห𝑠𝑡 , 𝜋(𝑎𝑡)൯
𝑇

𝑡=1

൩.
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Here, 𝛾 is the discounting factor.

3.4.2 Contributions

Using the features of the MDP, we solve the problem of video delivery in D2D environment. In this
section, we jointly optimize these delivery decisions by maximizing the average video quality under the
constraints on the playback delays of streaming users and the data rate guarantees for cellular vehicles.
Depending on the channel and queue states of the users, the decision on the cache-enabled vehicle
for video delivery is adaptively made based on the frame-based Lyapunov optimization theory by
comparing the expected costs of vehicles. For each cache-enabled vehicle, the expected cost is
obtained from the stochastic shortest path problem that is solved by DRL without the knowledge of the
global CSI. MDP applies in this part. A framework of the compromising characteristics of the D2D
underlaid cellular system, the vehicular network, and the wireless caching network is presented. For
such a network, the joint optimization problem for association with the cache-enabled vehicle for
delivering multimedia contents (e.g., video files) is formulated. The optimization problem maximizes the
time-average video quality under the constraints on the limited playback delay of the DUE and the
minimum data rate of the CUEs.

The problem of dynamic power allocations for both cellular and D2D links sharing the identical spectrum
without the knowledge of global CSI is formulated based on a MDP and solved using the DRL approach.
In contrast to the approaches in [RLL+15] and [LLX17], the proposed approach dynamically changes
power allocations to control interference and to limit the playback delay based on channel statistics and
queue states. In order to achieve efficient and improved learning of the delivery policy as well as to deal
with the very large state space, we adopt a DDPG-based method because the state space is continuous
and massively large. Considering the interference between the CUEs and DUEs, the decision on the
cache-enabled vehicle that will deliver the content, i.e., the D2D transmitter, is made under the frame-
based Lyapunov optimization theory [NS13], in larger timescale than power allocations of cellular and
D2D links. With the help of the DRL-based power allocations determined in a smaller timescale, the
node associations for content delivery can be also completed without global CSI.

3.4.3 Overall structure

D2D underlaid vehicular caching network where a certain vehicle user can request a video file form one
of the cache-enabled vehicles in its vicinity while some CUEs are communicating with the BS, as shown
in Figure 3.5.

Figure 3.5 D2D underlaid cache-enabled vehicular network.
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3.4.3.1 User queue model

Since a video file consists of many sequential chunks, the user receives the file from the cache-enabled
vehicle and processes data for video streaming services in chunks. The quality of each chunk can differ
in dynamic streaming and playback delay occurs when the chunk to be played has not yet arrived in
the queue. Therefore, we focus on limiting the queueing delay by dynamically adjusting the queue
backlogs of the streaming user. The queue dynamics of the DUE in each time slot can be represented
as follow

𝑄(𝑡 + 1) = max{𝑄(𝑡 + 1) + 𝜇(𝑡) − 𝑐, 0}.

The arrival process is

𝜇(𝑡) =  ቨ
𝑅𝑑(𝛼(𝑡), 𝑃𝑐(𝑡), 𝑃𝑑(𝑡), 𝑡) ∙ 𝑡𝑐

𝑆 ቀ𝑞൫𝛼(𝑡)൯ቁ
 ቩ.

3.4.3.2 Channel model

A Rayleigh fading channel is assumed for the wireless link from all vehicles to infrastructures and
vehicles. We denote the channel gain by ℎ =  √𝑋𝛽𝑔, where 𝑋 = 𝐴/𝑑𝛾 controls path loss with 𝑑, 𝐴, and
𝛾 being the server-user distance, the path loss component, and the decay exponent. In addition, 𝛽 is a
long-normal shadowing RV with the standard deviation 𝜉, and 𝑔~𝒞𝒩(0,1) represents the fast fading
component.

3.4.4 Dynamic node associations

Timescales of decisions on node association and power controls are different and formulates the
optimization problem that maximizes the average video quality with the constraints of limited playback
latency for DUEs and data rate guarantees for CUEs. Based on the average video quality, the playback
delay of the streaming user, and the data rate of the CUE, the spectrum of which is reused by the
streaming user, we can formulate the optimization problem that maximizes the long-term average video
quality constrained by the need to avert queue emptiness and guarantee the data rate of the CUE.

3.4.5 Decision on cache-enabled vehicle for video delivery
3.4.5.1 Modelling of Markov decision process

In order to prevent the queue from becoming empty, the optimization is solved based on the Lyapunov
optimization theory. According to the Lyapunov function, the drift-plus-penalty algorithm of the 𝑘-𝑡ℎ
frame can be formulated as follows

{𝑃𝑑,𝑘
∗  , 𝑃𝑑,𝑘

∗  } = arg min 𝒟൫𝛼𝑘 , Θ(𝑡𝑘), 𝑃𝑑,𝑘  , 𝑃𝑐,𝑘൯

𝑠. 𝑡. 0 ≤ 𝑃𝑑 ≤ 𝑃0
𝑑

 0 ≤ 𝑃𝑐 ≤ 𝑃0
𝑐 .

The above problem can be modelled by a MDP. The MDP is defined as ℳ = {𝑆, 𝐴, 𝑇, 𝑟}, where 𝑆
denotes the state space, 𝐴 denotes the action space, 𝑇 denotes the transition model and 𝑟 denotes the
reward structure. The queue backlog set of Θ(𝑡𝑘) represents the current state that satisfies the Markov
property. The state space is  ℝ+, where 𝒵(𝑡) ∈ 𝒵 = {0,1, … , 𝑄} and 𝑊(𝑡) ∈ ℝ+. The action set consists
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of power allocations for the D2D transmitter and the CUE, i.e., 𝑃𝑑(𝑡) and 𝑃𝑐(𝑡) for 𝑡 ∈  𝒯𝑘 .

Denote the action at slot 𝑡 by Ξ(𝑡) = [ 𝑃𝑐(𝑡), 𝑃𝑑(𝑡)]. By letting the action space be 𝒜 ∈ [0, 𝑃0
𝑑] × [0, 𝑃0

𝑐],
the constraints are satisfied. Let power allocations for both the CUE and the DUE be uniformly
discretized into 𝑁𝐴 + 1 levels, and the finite action space be represented by

𝒜 = ቊ0,
𝑃0

𝑑

  𝑁𝐴
, … ,

(𝑁𝐴 − 1)𝑃0
𝑑

  𝑁𝐴
ቋ × ቊ0,

𝑃0
𝐶

𝑁𝐴
, … ,

(𝑁𝐴 − 1)𝑃0
𝐶  

𝑁𝐴
ቋ

The action decisions are made over the 𝑘-𝑡ℎ frame, i.e., 𝑡 ∈ 𝒯𝑘, and the reward (i.e., incurred cost with
the negative sign) at each slot 𝑡 ∈ 𝒯𝑘  is represented by

𝑟൫Θ(𝑡𝑘), Ξ(𝑡)൯ = 𝑍(𝑡) ቆ𝑐 − ቞
𝑡𝑐𝑅𝑑(𝛼𝑘 , 𝑃𝑑 , 𝑃𝑐 , 𝑡)

𝑆൫𝑞(𝛼𝑘)൯
቟ቇ + 𝛾𝑊(𝑡)൫𝜂𝑐 − 𝑅𝑐(𝑃𝑐  , 𝑃𝑑  , 𝑡)൯ − 𝑉𝑇 ∙ 𝒫൫𝑞(𝛼𝑘)൯;

Therefore, the reward 𝑟 is the cost multiplied by the negative sign. At every slot 𝑡, channel gains are
randomly generated, and state transitions occur according to random network events and the current
queue state of 𝛩(𝑡). The transition from Θ(𝑡),  to Θ(𝑡 + 1) is defined as

𝑃𝑠′𝑠(𝜉) = Pr{Θ(𝑡 + 1)  = 𝑠′|Θ(𝑡) = s, Ξ(𝑡) = 𝜉} ,   for all states s, s′ ∈ 𝑆 and 𝜉 ∈ 𝐴.

According to Bellman optimality equation, the minimum incurred cost at Θ(𝑡0) = 𝑠0 is given by

min
 Ξ

𝔼 ቎෍𝑟൫Θ(𝑡), Ξ(𝑡)൯ห
Θ(𝑡0)=𝑠0

𝑇

𝑡=𝑡0

቏ = min
Ξ

𝔼[𝑟(𝑠0, 𝜉) + (Θ(𝑡 + 1)|Θ(𝑡) = 𝑠0, Ξ(𝑡) = 𝜉)]

= min
Ξ

𝔼 ൥𝑟(𝑠0 , 𝜉) +  ෍ 𝑃𝑠,𝑠0
(𝜉)𝐺(𝑠)|Θ(𝑡0) = 𝑠0, Ξ(𝑡0) = 𝜉 

𝑠∈𝑆

൩.

Note that the channel information is not known, and the state transition probabilities are not given;
therefore, we solve the problem using a DRL algorithm. Based on the finite MDP, the goal of
reinforcement learning is to train a policy 𝜋 ∈ Π: 𝑆 × 𝐴 → [0, 1] which gives all action candidates at every
state the probability values in [0,1]. Policy 𝜋 maps the state of the environment to the action to maximize
the expected reward. Denote the expected reward under the policy 𝜋 by 𝒥(𝜋). With finite 𝑇 steps, 𝒥(𝜋)
can be described as the accumulation of the reward at each time step

𝒥(𝜋) = 𝔼 ൥෍𝛿𝑡𝑟൫Θ(𝑡), Ξ(𝑡)൯ห
𝜋

𝑇

𝑡=0

൩,

where 𝛿 is a discount factor that adjusts the effect of future rewards to the current decision. The optimal
policy 𝜋∗  is 𝜋∗ = arg max

𝜋
𝒥(𝜋) . In DRL, the policy 𝜋  is approximated by parameter 𝜃 . The state

sequence of 𝑠 that is generated according to the policy 𝜋𝜃 is the distribution. Then, the expected reward
obtained by the state sequence 𝑠 and the policy 𝜋𝜃 can be denoted as 𝒥൫𝑠, 𝜋𝜃(𝑠)൯, and the objective
reinforcement learning is formulated as: arg max

𝜃
𝔼𝑠~𝜋𝜃

ൣ𝒥൫𝑠, 𝜋𝜃(𝑠)൯൧.

3.4.6 Simulation results

To verify the advantages of the proposed dynamic video delivery policy, we compared the proposed
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scheme with four other schemes: “Genie-aided”, “The scheme presented in [LLX17]”. “Nearest”,
“Highest-Qual”.

A comparison of our scheme with the “Genie-aided” scheme and the scheme presented can provide
specific insight into the effectiveness of DRL-based power allocations.

The performance comparison of the proposed cache-enabled vehicle association for video delivery
based on frame-based Lyapunov optimization with the “Nearest” and “Highest-Qual” schemes shows
its advantages.

Figure 4.6 shows the plots of these performance metrics (data rate of the CUE, playback delay at the
DUE, time-average video quality) versus the transmit power budgets of both cellular and DUEs.

Figure 3.6 Data rate of CUE, delay occurrence rates, Average video quality (vs. 𝑃0)

The method for the joint optimization of three decisions having different timescales in D2D underlaid
cellular and vehicular caching networks was proposed

1. Association with a cache-enabled vehicle to allow video delivery
2. Power allocation for the DUE
3. Power allocation for the CUE.

The proposed algorithm maximizes the long-term time averaged video quality while limiting the playback
delay and guaranteeing the data rate of the CUE, given the spectrum reuse policy. The decision on the
cache-enabled vehicle to be used for video delivery is achieved by using the frame-based Lyapunov
optimization theory under consideration of the interference signal from the CUE. The dynamic power
allocations of both the CUEs and DUEs are obtained by using the DRL approach in the absence of
knowledge of channel fast fading. Our intensive simulation results verify that the proposed algorithm
effectively achieves a balanced trade-off between the data rate of the CUE, the playback delay
occurrence of video streaming, and the average video quality.

3.5 Summary

This chapter studied data (handing over of data) and service (computation offloading) as yet another
category of AI for edge. More specifically, we studied two computation offloading algorithms, namely,
flexSensing as well as a decentralized task offloading algorithm. As well as dynamic video delivery in
wireless caching networks.

In section 3.2, we proposed FlexSensing, a QoI- and processing-latency-aware task allocation scheme
for drone-based visual crowdsourcing. This scheme aims at increasing the QoI while reducing the
processing latency of crowdsourced visual data, taking into account the variation in the VFN workload
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and drone mobility. We addressed the problem of seeking the optimal task allocation strategy via the
formulation of an MDP and solve it through the DQN.

Section 3.3 is to propose adaptive learning based decentralized task offloading algorithm to optimize
the average offloading cost. The proposed algorithm enables each agent to learn the service capability
of each available fog node without frequent exchange of state information and achieve exploitation-
exploration balance, which is further improved by considering input data size. At the same time, some
properties could be satisfied, such as privacy by bandit feedback and security against oblivious attack
by adversarial MAB, low complexity by sequential decision making, low signalling overhead by learning
state information indirectly, instead of obtaining them from signal message.

In section 3.4, a method for the joint optimization of three decisions having different timescales in D2D
underlaid cellular and vehicular caching networks were proposed: 1) association with a cache-enabled
vehicle to allow video delivery, 2) power allocation for the DUE, and 3) power allocation for the CUE.
The proposed algorithm maximizes the long-term time averaged video quality while limiting the playback
delay and guaranteeing the data rate of the CUE, given the spectrum reuse policy. The decision on the
cache-enabled vehicle to be used for video delivery is achieved by using the frame-based Lyapunov
optimization theory under consideration of the interference signal from the CUE. The dynamic power
allocations of both the CUEs and DUEs are obtained by using the DRL approach in the absence of
knowledge of channel fast fading. Our intensive simulation results verify that the proposed algorithm
effectively achieves a balanced trade-off between the data rate of the CUE, the playback delay
occurrence of video streaming, and the average video quality.
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4 Topology of edge

4.1 Overview

This chapter is studies the topology of edge which concerns wireless networking. Here topology refers
to various ways the wireless communication signals are used to transfer information or power, their
optimization techniques and methodologies, signalling, scheduling, wireless communication hardware
and approaches to combat non-idealities thereof. Figure 4.1 is a schematic illustrating some of the
problems discussed and some of the technologies demonstrated in this chapter.

Figure 4.1 Schematic of a UAV and a sensor that jointly use AI to learn the dynamic wireless
environment and optimize their operations accordingly.

In the following sections of this chapter, we design a meta-learning algorithm that can learn to
demodulate from few pilots and a resource allocation procedure in wireless-powered communication
networks using deep deterministic policy gradient.

Section 4.2 considers an IoT scenario in which devices sporadically transmit short packets with few
pilot symbols over a fading channel. Devices are characterized by unique transmission non-idealities,
such as I/Q imbalance. The number of pilots is generally insufficient to obtain an accurate estimate of
the end-to-end channel, which includes the effects of fading and of the transmission side distortion. We
propose to tackle this problem by using meta-learning. Accordingly, pilots from previous IoT
transmissions are used as meta-training data in order to train a demodulator that is able to quickly adapt
to new end-to-end channel conditions from few pilots. Various state-of-the-art meta-learning schemes
are adapted to the problem at hand and evaluated, including MAML, FOMAML, REPTILE, and fast
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CAVIA. An offline solution is developed. Numerical results validate the advantages of meta-learning as
compared to training schemes that either do not leverage prior transmissions or apply a standard joint
learning algorithms on previously received data.

In section 4.3, we study a WPCN composed of several nodes that rely on a HAP for their supply of
energy. While the dominant focus of the literature has been on maximizing the throughput of this system
in an AWGN channel, we optimize the performance of this system in a fading channel. In order to do
so, we use reinforcement learning which can take a sequence of decisions to reach a higher long-term
reward. In view of its ability to deal with continuous states and actions, we use the DDPG method to
optimize this system. Thanks to its ability to deal with continuous states and actions, the DDPG
algorithm can deal with the curse of dimensionality of this problem and solve it for a reasonable number
of nodes. More specifically, simulation results confirm that the DDPG algorithm can easily learn to
optimize a WPCN of five nodes and achieve a higher sum-rate compared with the traditional
optimization schemes.

4.2 Learning to demodulate from few pilots via meta-learning
4.2.1 Overview
4.2.1.1 Motivation

For many standard channel models, such as additive Gaussian noise and fading channels with receive
CSI, the design of optimal demodulators and decoders is well understood. Most communication links
hence use pilot sequences to estimate CSI, which is then plugged into the optimal receiver with ideal
receive CSI (see, e.g., [ODS+19]). This standard model-based approach is inapplicable if either of the
following is true

1. An accurate channel model is unavailable;
2. The optimal receiver for the given transmission scheme and channel is of prohibitive complexity

or unknown.

Examples of both scenarios are reviewed in [I20, S18a], and include new communication set-ups, such
as molecular channels, which lack well-established models; and links with strong non-linear
components, such as satellite channels with non-linear transceivers, whose optimal demodulators can
be highly complex [I20, BRC98]. This observation has motivated a long line of work on the application
of ML methods to the design of demodulators or decoders, from the 90s [I20] to many recent
contributions, including [OH17, DSH+17, KAH+19] and references therein.

Demodulation and decoding can be interpreted as classification tasks, where the input is given by the
received baseband signals and the output consists of the transmitted symbols for demodulation, and of
the transmitted binary messages for decoding. Pilot symbols can hence be used as training data to
carry out the supervised learning of a parametric model for the demodulator or decoder, such as SVMs
or NNs. The performance of the trained “machine" as a demodulator or a decoder generally depends
on how representative the training data are for the channel conditions encountered during test time and
on the suitability of the parametric model in terms of trade-off between bias and variance [HTF09].

To the best of our knowledge, all of the prior works reviewed above assume that training is carried out
using pilot signals from the same transmitter whose data is to be demodulated or decoded. This
generally requires the transmission of long pilot sequences for training. In this section, we consider an
IoT-like scenario, illustrated in Figure 4.2, in which devices sporadically transmit short packets with few
pilot symbols. The number of pilots is generally insufficient to obtain an accurate estimate of the end-
to-end channel, which generally includes the effects of fading and of the transmitter’s non-linearities
[HDA17]. We propose to tackle this problem by using meta-learning [T98].
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Figure 4.2 Illustration of few-pilot training for an IoT system via meta-learning

4.2.1.2 Meta-learning

Meta-learning, also sometimes referred to as “learning to learn", aims at leveraging training and test
data from different, but related, tasks for the purpose of acquiring an inductive bias that is suitable for
the entire class of tasks of interest [T98]. The inductive bias can be optimized by selecting either a
model class, e.g., through a feature extractor, or a training algorithm, e.g., through an initialization of
model parameters or the learning rate [GFL+18, SPK20]. An important application of meta-learning is
the acquisition of a training procedure that allows a quick adaptation to a new, but related, task using
few training examples, also known as few-shot learning [VBL+16]. For instance, one may have training
and test labelled images for binary classifiers of different types of objects, such as cats vs dogs or birds
vs bikes. These can be used as meta-training data to quickly learn a new binary classifier, say for
handwritten binary digits, from few training examples.

Meta-learning has recently received renewed attention, particularly thanks to advances in the
development of methods based on Stochastic Gradient Descent (SGD), including MAML [FAL17],
REPTILE [NAS18], and fast CAVIA [ZSK+19]. Such techniques can be generally classified as either
offline, in which case the meta-training data is fixed and given [FAL17, NAS18, ZSK+19]; or online, in
which case all prior data from related tasks is treated as meta-training data in a streaming fashion
[FRK+19].

4.2.1.3 Main contributions

As illustrated in Figure 4.3 and Figure 4.4, the key idea of this section is to use pilots from previous
transmissions of other IoT devices as meta-training data in order to train a procedure that is able to
quickly adapt a demodulator to new end-to-end channel conditions from few pilots.
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Figure 4.3 Offline meta-learning: Meta-training and meta-test data for 4-PAM transmission from set
𝑆 = {−3, −1,1,3}.

Figure 4.4 Online meta-learning: Meta-training and meta-test data for 4-PAM transmission from set
𝑺 = {−𝟑, −𝟏, 𝟏, 𝟑}.

Here, we focus on an offline algorithm, in which the set of previous transmissions is fixed. The main
contributions are as follows

 We adapt to the problem at hand a number of state-of-the-art offline meta-learning solutions,
namely MAML [FAL17], FOMAML [FAL17], REPTILE [NAS18], and CAVIA [ZSK+19]. Their
relative merits and a unified interpretation in terms of the EM algorithm are discussed;

 We validate the advantage of meta-learning with extensive numerical results that provide
comparisons with conventional model-based and learning-based communication schemes. A
comparative study of the performance of various meta-learning solutions is also presented;
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The results in this section have been partially presented in [PJS+19]. In particular, reference [PJS+19]
derives an offline MAML based algorithm, and offers some preliminary numerical results. As compared
to the preliminary conference version [PJS+19], this section presents additional analysis, including a
general framework for meta-learning based on EM; novel algorithms, introducing a comprehensive
evaluation of a larger number of meta-learning offline schemes; and more extensive discussions in
terms of both algorithm definition and extra experiments.

4.2.1.4 Related works

In [JKA+19], which is concurrent to [PJS+19], the authors train a NN-based decoder that can adapt to
the new channel condition with a minimal number of pilot symbols using meta-learning via FOMAML.
In [MLL19], the authors train a NN-based channel estimator in OFDM system with meta-learning via
FOMAML in order to obtain an effective CE given a small number of pilots. After the first submission of
this work, several additional works have considered meta-learning for communication. Reference
[SPK20] provides a review of meta-learning with applications to communication systems. In [YGZ+19],
meta-learning is used for DL/UL channel conversion in Frequency-Division Duplex massive MIMO
channels. References [PSK20a] and [PSK20b] consider meta-learning for end-to-end training of
physical layer with and without a channel model, respectively. Finally, reference [GAH20] considers a
related approach based on hypernetworks to aid NN-based MIMO detection.

The rest of the section is organized as follows. In subsection 4.2.2, we detail system model and offline
meta-learning problem. In subsection 4.2.3, various offline meta-learning solutions are covered within
a unified interpretation. Numerical results are presented in subsection 4.2.4.

4.2.2 Model and problem
4.2.2.1 System model

In this subsection, we consider the IoT system illustrated in Figure 4.2, which consists of a number of
devices and a BS. For each device 𝑘 , the complex symbol transmitted by the device and the
corresponding received signal at the BS are denoted as 𝑠𝑘 ∈ 𝑆 and 𝑦𝑘, respectively.

We also denote by 𝑆 the set of all constellation symbols as determined by the modulation scheme. The
end-to-end channel for a device 𝑘 is defined as

𝑦𝑘 = ℎ𝑘𝑥𝑘 + 𝑧𝑘 , (4-1)

where ℎ𝑘 is the complex channel gain from device 𝑘 to the BS, which is constant over a transmission
block according to the standard quasi-static fading model typically assumed for short-packet
transmissions; 𝑧𝑘 ∼ 𝒞𝒩(0, 𝑁0) is additive white complex Gaussian noise; and

𝑥𝑘~𝑝𝑘(⋅ |𝑠𝑘) (4-2)

is the output of a generally random transformation defined by the conditional distribution 𝑝𝑘(⋅ |𝑠𝑘). This
conditional distribution accounts for transmitter’s non-idealities such as phase noise [CP02], I/Q
imbalance [WF05], and amplifier’s characteristics [HDA17] of the IoT device. Throughout this section
for each device 𝑘, we assume pilots and data symbols to follow the same constellation 𝑆 and to be
subject to the transmitter’s non-idealities defined by 𝑝𝑘(⋅ |𝑠𝑘). The average transmitted energy per
symbol is constrained as 𝔼[|𝑥𝑘|2] ≤ 𝐸𝑥 for some positive value 𝐸𝑥 for both pilot and data symbols. As
an example for the transmitter’s non-idealities (2), a common model for the I/Q imbalance assumes the
following transformation [TM07]
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𝑥𝑘 = (1 + 𝜖𝑘) cos 𝛿𝑘 ℛℯ{𝑠𝑘} − (1 + 𝜖𝑘) sin 𝛿𝑘 ℐ𝓂{𝑠𝑘}
+ 𝑗൫(1 − 𝜖𝑘) cos 𝛿𝑘 ℐ𝓂{𝑠𝑘} − (1 − 𝜖𝑘) sin 𝛿𝑘 ℛℯ{𝑠𝑘}൯, (4-3)

where 𝜖𝑘 and 𝛿𝑘 represent the amplitude imbalance factor and phase imbalance factor, which are real
constants or RVs. Note that we only explicitly model imperfections at the transmitter side. This is
because, in practice, non-idealities on the receiver processing chain at the BS are expected to be much
less significant than the mentioned non-idealities for IoT devices. Furthermore, receiver-side non-
linearities at the BS can be also mitigated through offline designs prior to deployment.

Based on the reception of few pilots from a target device, we aim at determining a demodulator that
correctly recovers the transmitted symbol 𝑠 from the received signal 𝑦 with high probability. The
demodulator is defined by a conditional probability distribution 𝑝(𝑠|𝑦, 𝜙), which depends on a trainable
parameter vector 𝜙.

4.2.2.2 Meta-learning problem

Following the nomenclature of meta-learning [FAL17], the target device is referred to as the meta-test
device. To enable few-pilot learning, we assume here that the BS can use the signals received from the
previous pilot transmissions of 𝐾 other IoT devices, which are referred to as meta-training devices and
their data as meta-training data. Specifically, as illustrated in Figure 4.3, the BS has N pairs of pilot 𝑠𝑘
and received signal 𝑦𝑘 for each meta-training device 𝑘 = 1, … , 𝐾. The meta-training dataset is denoted
as 𝐷 = {𝐷𝑘}𝑘=1,…,𝐾 , where 𝐷𝑘 = ൛൫𝑠𝑘(𝑛), 𝑦𝑘(𝑛)൯: 𝑛 = 1, … , 𝑁ൟ, and ൫𝑠𝑘(𝑛), 𝑦𝑘(𝑛)൯  are the 𝑛 - 𝑡ℎ  pilot-
received signal pairs for the 𝑘-𝑡ℎ meta-training device. This scenario is referred to as offline meta-
learning since the meta-training dataset 𝐷 is fixed and given.

For the target, or the meta-test, device, the BS receives P pilot symbols. We collect the 𝑃 pilots received
from the target device in set 𝐷𝑇 = ൛൫𝑠(𝑛), 𝑦(𝑛)൯: 𝑛 = 1, … , 𝑃ൟ. The demodulator can be trained using meta-
training data 𝐷 and the pilot symbols 𝐷𝑇 from the meta-test device.

Training requires the selection of a parametric model 𝑝(𝑠|𝑦, 𝜙) for the demodulator. The choice of the
parametric model 𝑝(𝑠|𝑦, 𝜙) should account for the standard trade-off between capacity of the model
and overfitting [B06, S18b]. To fix the ideas, we will assume that the demodulator 𝑝(𝑠|𝑦, 𝜙) is given by
a multi-layer NN having 𝐿 layers, with a softmax non-linearity in the final, 𝐿-𝑡ℎ, layer. This can be written
as

𝑝(𝑠|𝑦, 𝜑) =
exp ቀቂ𝑓൛𝜑{(𝐿−1)}ൟ ( 𝑓൛𝜑{(𝐿−2)}ൟ (⋅⋅ 𝑓൛𝜑{(1)}ൟ(𝑦) ))]  ቃ

𝑠
ቁ

∑ exp ቀቂ𝑓൛𝜑{(𝐿−1)}ൟ ( 𝑓൛𝜑{(𝐿−2)}ൟ (⋅⋅ 𝑓൛𝜑{(1)}ൟ(𝑦) ))]  ቃ
𝑠′

ቁ𝑠′∈𝑆 

, (4-4)

where 𝑓𝜑(𝑙)(𝑥) = 𝜎൫𝑊(𝑙)𝑥 + 𝑏(𝑙)൯ represents the non-linear activation function of the 𝑙 -𝑡ℎ  layer with
parameter 𝜙(𝑙) = {𝑊(𝑙), 𝑏(𝑙)}, with 𝑊(𝑙) and 𝑏(𝑙) being the weight matrix and bias vector of appropriate
size, respectively; [∙]𝑠 stands for the element regarding 𝑠 ; and 𝜙 = ൛𝜙(𝑙)ൟ

𝑙=1,…,𝐿−1 is the vector of
parameters. The non-linear function 𝜎(·) can be, e.g., a ReLU or a hyperbolic tangent function. The
input 𝑦 in (4-4) can be represented as a two-dimensional vector comprising real and imaginary parts of
the received signal.

4.2.3 Meta-learning algorithms

In this subsection, we adapt state-of-the-art offline meta-learning algorithms to design the demodulator
in (4-4) given meta-training and meta-test data. As discussed earlier, we view demodulation as a



Project No 815191

Date 12.01.2021

D4.3 Final report on AI-assisted networking and edge computing Dissemination Level (PU)

https://primo-5g.eu/  - @PriMO5G 58

classification task. To set the notation, for any set 𝐷0 of pairs (𝑠, 𝑦) of transmitted symbol 𝑠 and received
signal 𝑦, the standard cross-entropy loss function is defined as a function of the demodulator parameter
vector 𝜙 as

𝑓𝜑(𝑙)(𝑥) = 𝜎൫𝑊(𝑙)𝑥 + 𝑏(𝑙)൯. (4-5)

4.2.3.1 Joint training

As a benchmark, we start by considering a conventional approach that uses the meta-training data 𝐷
and the training data 𝐷𝑇 for the joint training of the model 𝑝(𝑠|𝑦, 𝜙). Joint training pools together all the
pilots received from the meta-training devices and the meta-test device, and carries out the optimization
of the cumulative loss 𝐿{𝐷∪𝐷T}(𝜑) in (4-5) using SGD. Accordingly, the parameter vector 𝜙 is updated
iteratively based on the rule

𝜑 ← 𝜑 + 𝜂 𝛻𝜑 log 𝑝൫𝑠(𝑛)|𝑦(𝑛), 𝜑൯, (4-6)

by drawing one pair ൫𝑠(𝑛), 𝑦(𝑛)൯ at random from the set 𝐷 ∪ 𝐷𝑇. In (4-6), the step size 𝜂 is assumed to
be fixed for simplicity of notation but it can in practice be adapted across the updates (see, e.g.,
[GBC16]). Furthermore, this rule can be generalized by summing the gradient in (6) over a mini-batch
of pairs from the dataset 𝐷 ∪ 𝐷𝑇 at each iteration [GBC16].

4.2.3.2 A unified view of meta-learning

A useful way to introduce meta-learning in terms of the graphical model is illustrated in Figure 4.5
Accordingly, meta-learning assumes a demodulator 𝑝(𝑠|𝑦, 𝜑, 𝜃) that depends on a shared parameter 𝜃
common to all tasks, or users, and on a latent context variable 𝜑, which is specific to each user. The
specific parameterization 𝑝(𝑠|𝑦, 𝜑, 𝜃)  and its relationship with (4-4) depend on the meta-learning
scheme, and they will be discussed below. Note that, as illustrated in Figure 4.5, the context vector 𝜑
is assumed to be random, while 𝜃 is a shared (deterministic) parameter. Furthermore, from Figure 4.5,
the shared variable 𝜃 can also affect the prior distribution of the context variable 𝜑. In this framework,
the key idea is that meta-training data 𝐷 is used to estimate the shared parameters 𝜃 via the process
of meta-learning, while the context variable φ is inferred from the meta-test data 𝐷𝑇.

Figure 4.5 Graphical model assumed by meta-learning: The demodulator 𝒑(𝒔|𝒚, 𝝋, 𝜽) depends on a
user-specific, or context, RV 𝝋, as well as on a shared parameter 𝜽, which may also affect the prior
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distribution of the context variable 𝝋.

To elaborate, a principled way to train the model in Figure 4.5 would be to estimate parameter 𝜃 using
the EM algorithm based on the meta-training data D. The EM algorithm is in fact the standard tool to
tackle the problem of maximum likelihood estimation in the presence of latent variables, here the context
variable 𝜑 (see, e.g., [B06, S18b, KF09]). EM maximizes the sum of marginal likelihoods

𝑝(𝑠|𝑦, 𝜃) = 𝔼𝜙∼𝑝൫𝜙ห𝜃, 𝒟𝑘൯[𝑝(𝑠|𝑦, 𝜙, 𝜃)] (4-7)

over the data pairs (𝑠, 𝑦) from all data sets 𝐷𝑘 in the meta-training data set 𝐷. In (4-7), the expectation
is taken with respect to the posterior distribution 𝑝(𝜑|𝜃, 𝐷𝑘) of the context variable given the training
data 𝐷𝑘 of the 𝑘-𝑡ℎ meta-training device. After EM training, one can consider the obtained parameter 𝜃
as fixed when inferring a data symbol 𝑠 given a new observed signal 𝑦 and the pilots 𝐷𝑇 for the meta-
test device. This last step would ideally yield the demodulator

𝑝(𝑠|𝑦, 𝜃) = 𝔼𝜙∼𝑝൫𝜙ห𝜃, 𝒟T൯[𝑝(𝑠|𝑦, 𝜙, 𝜃)], (4-8)

where the average is taken over the posterior distribution 𝑝(𝜑|𝜃, 𝐷𝑇) of the context variable given the
training data of the meta-test device.

The computation of the posteriors 𝑝(𝜑|𝜃, 𝐷𝑘) in (4-7) and 𝑝(𝜑|𝜃, 𝐷𝑇) in (4-8) is generally of infeasible
complexity. Therefore, state-of-the-art meta-learning techniques approximate this principled solution by
either employing point estimate of latent context variable 𝜑 [FAL17, NAS18, ZSK+19] or by a direct
approximation of its posterior distribution [RB19, GBB+19, NDC19]. In this section, we focus on the
more common point estimate based meta-learning techniques, which are reviewed next.

4.2.4 Results of meta-learning for Rayleigh fading with I/Q imbalance

In this subsection, we provide numerical results in order to bring insights into the advantages of meta-
learning1.

We consider a realistic scenario including Rayleigh fading channels ℎ𝑘 ∼ 𝒞𝒩(0,1)  and model (4-3) to
account for I/Q imbalance at the transmitters. We set 𝜖𝑘 = 0.15𝜖′𝑘 and 𝛿𝑘 = 15°𝛿′

𝑘 , where 𝜖𝑘
′ ~Beta(5,2)

and 𝛿𝑘
′ ~Beta(5,2) are independent. Note that this implies that 𝜖𝑘 and 𝛿𝑘 are limited in the intervals

[0,0.15] and [0,15°], respectively.

We assume 16-QAM for constellation 𝑆, and the sequence of pilot symbols in the meta-training dataset
D and meta-test dataset 𝐷𝑇 is fixed by cycling through the symbols in 𝑆, while the transmitted symbols
in the test set for the metatest device are randomly selected from S. The number of meta-training
devices is set as 𝐾 = 1000; the number of pilot symbols per device is 𝑁 = 3200, which are divided into
𝑁𝑡𝑟 training samples and 𝑁te = 𝑁 − 𝑁tr testing samples. The average SNR per complex symbol is
given as 𝐸𝑥/𝑁0 = 20dB.

In Figure 4.6, the symbol error rate with respect to the number 𝑃 of pilots for the meta-test device is
illustrated when using an equal number of pilots for meta-training, i.e., 𝑁tr = 𝑃. As in Figure 4.4, we
compare the performance of meta-training methods with conventional learning and joint training
strategies, along with a conventional communication scheme based on MMSE CE with 𝑃 pilots followed
by a maximum likelihood demodulator. All the schemes with worse performance as compared to this

1 Code is available at https://github.com/kclip/ meta-demodulator.
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conventional communication scheme are not shown. MAML, REPTILE, and CAVIA are seen to adapt
quickly to the channel and I/Q imbalance of the target device, outperforming the conventional scheme
based on MMSE CE, which is agnostic to the I/Q imbalance. MAML shows the best performance for
sufficiently large 𝑃, while CAVIA is seen to outperform MAML when fewer pilots are available.

Figure 4.6 Symbol error rate with respect to the number 𝑁tr = 𝑃 of training pilots used for both meta-
training and meta-testing for offline meta-learning with 16-QAM, Rayleigh fading, and I/Q imbalance

with 𝐾 = 1000 meta-training devices, 𝑁tr + 𝑁te = 3200 pilots for meta-training devices.

It is worth noting that, when there is a sufficient number 𝑃 of pilots for the meta-test device, conventional
learning can outperform meta-learning schemes. In this case, the inductive bias inferred by meta-
training can hence cause a performance degradation [PSK20a].

In Figure 4.7, we consider the case where the number 𝑃 of pilots for the meta-test device is different
from the number 𝑁tr used for meta-training, here set to 𝑁tr = 4. Despite this mismatch between meta-
training and metatesting condition, MAML, CAVIA, and REPTILE are seen to outperform conventional
communication when there is a sufficient number P of pilots for meta-test. In a manner similar to results
in Figure 4.6, CAVIA shows the best performance with extremely few pilots, e.g., 4 pilots, while MAML
is preferable for larger values of 𝑃. In fact, comparing Figure 4.6 and Figure 4.7 reveals that having 𝑃 >
𝑁𝑡𝑟 can even be advantageous for some meta-training schemes, such as CAVIA. This may be
interpreted in terms of meta-overfitting, which refers to a degradation in meta-testing performance due
to an excessive dependence of the meta-trained shared parameters on the meta-training data [AM17].
Using fewer pilots during meta-training can potentially reduce meta-overfitting, by making the shared
parameters less dependent on meta-training data, and improve meta-testing performance.
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Figure 4.7 Symbol error rate with respect to the number 𝑃 of pilots (used during meta-testing) for
offline meta-learning with 16-QAM, Rayleigh fading, and I/Q imbalance for 𝐾 = 1000 meta-training

devices, 𝑁tr = 4 (vertical line), 𝑁te = 3196.

Finally, in Figure 4.8, the symbol error rate with respect to the number 𝐾 of the meta-training devices is
demonstrated. Joint training has a performance similar to conventional learning, hence being unable to
transfer useful information from the 𝐾 meta-training devices. In contrast, MAML and CAVIA show better
performance when given data from more meta-training devices, up to a point where the gain saturates.
This matches well with the intuition that there is only a limited amount of common information among
different users that can be captured by meta-learning. Confirming the results in Figure 4.6 and Figure
4.7, MAML and CAVIA are seen to offer better performance than the conventional communication
scheme with a sufficient number 𝐾 of meta-training devices. Furthermore, CAVIA needs a larger value
of K than MAML. This accounts again for CAVIA’s architectural difference as compared to MAML:
CAVIA needs to find a shared parameter vector θ for the demodulator 𝑝(𝑠|𝑦, 𝜑T, 𝜃) that is not adapted
to the training symbols of the current device.
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Figure 4.8 Symbol error rate with respect to number 𝐾 of meta-training devices for offline meta-
learning with 16-QAM, Rayleigh fading, and I/Q imbalance with 𝑁tr = 4 and 𝑁te = 3196 for meta-

training devices, 𝑃 = 8 pilots for meta-test devices.

4.3 Resource allocation in wireless-powered communication networks using
deep deterministic policy gradient

4.3.1 Overview

Traditional mobile wireless devices rely on batteries for their supply of power. This has limited their
application in areas where battery replacement or replenishment is difficult or even impossible. Lately,
energy harvesting has become an alternative to sustain such wireless devices. These methods rely on
natural resources such as wind or solar energy. However, these resources are uncontrollable and can
be intermittent. An even more recent move toward a truly wireless network has been to harvest energy
from far-field RF signals [JZ14]. The energy is transported using the RF energy from the AP to the
nodes. The nodes, harvest and save the energy and send back information in return. This type of
network is called the WPCN which has found application in many areas such as WSN, RFID systems,
IoT networks, and perhaps more recently used in conjunction with UAVs. Examples of such applications
are considered in [WYX19, PLE19, XXZ20] where UAV-mounted APs serve nodes which are located
on the ground which are sometimes referred to as GTs.

WPCN resource allocation using conventional algorithms that rely on greedy optimization has been
studied extensively in the literature, both originally [JZ14] as well as recently [ASP20, RNR19, ASP20].
Here, greedy refers to the HTT or the TWH protocols which maximize the throughput in every frame.
The former, was first popularized in [JZ14] which proposed that the nodes first harvest the broadcast
energy from the HAP, save the harvested energy, and then utilise all the harvested energy to transmit
information in the UL. The latter protocol, i.e. the TWH protocol, allows the nodes to simultaneously
harvest energy in the DL and utilise the harvested energy to transmit information in the UL. This
approach, originally proposed in [ASP20], is only possible in FDD WPCN. Nevertheless, both these
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techniques dictate that all the harvested energy in a single frame be consumed in the same frame,
making them only optimal in AWGN channels. As was first argued in [BZ17], and later in [AP18], since
these traditional methods make no assumptions about the variability of the channel and maximize the
system throughput in every single frame, their approach is greedy and hence suboptimal.

Yet, higher expected long-term throughput may be gained by directly maximizing the long-term average
throughput. This was considered in [BZ17, LGL19] where MDP was used to train a WPCN of two nodes.
However, since the MDP cannot directly deal with continuous states and actions, to adapt this approach
to the WPCN problem, the authors had to discretize the states and actions. This, in turn leads to the
curse of dimensionality, making this solution exponentially more difficult to be applied to networks
having more than two nodes. Another attempt to solve this problem using mathematical modelling of
the ergodic throughput was proposed in [AP18]. The solution developed in this work, however, serves
more as a theoretical bound or an upper limit of such a policy than a practical one.

It should be noted that, the key point in all such solutions is the emphasis on the long-term average
throughput of the wireless networks in flat-fading channels, a notion which is properly called the ergodic
throughput in communication systems. In this sense, reinforcement learning is relevant because of its
ability to deal with a sequence of actions that leads to sacrifice of short-term reward for higher long-
term reward. On the other hand, because the parameters in WPCN nodes are continuous, we use the
DDPG algorithm [LHP+15] which can natively deal with such continuous problems without the need for
discretization. The goal of the present work is to investigate such a problem. In short, in this section

1. The multi-node energy management problem in wirelessly powered communication problem is
expressed as a reinforcement learning problem whose goal is to maximize the ergodic UL sum-
rate. Our formulation makes the definitions of the states normalized which further helps the RL
algorithm learn more efficiently.

2. We use the DDPG algorithm to calculate the optimal policy. In this algorithm, the actor net is in
charge of learning the optimal policy, while the critic net prevents the curse of dimensionality
by calculating the Q-value instead of using a Q-table.

3. We use simulation to confirm that the proposed policy can actually improve the conventional
slot-oriented policy in a 5-node setup. The results show that, our algorithm yields higher
expected sum-rate.

In subsection 4.3.2 we provide an overview of the DDPG. In subsection 4.3.3 we study the system
model of the problem. After that, we formulate the WPCN resource allocation problem using the DDPG
algorithm in subsection 4.3.4. We finally present the simulation results in subsection 4.3.5.

4.3.2 An overview of the deep deterministic policy gradient

Recently there has been growing interest in RL algorithms that can deal with continuous action and
states. DDPG is one of such algorithms and is well suited for solving complex problems with many
continuous action and states that would otherwise be nearly impossible to solve using other
methodologies. DDPG [LHP+15] has two networks: The actor network which maps states to actions
and generates a deterministic policy, and the critic network which maps states and actions to episode
reward which simulates the Q-table.

These networks each have an online as well as a target network which have identical structures. We
use 𝑄 for the online critic network and 𝜇 for the online actor network. Likewise, the target actor and critic
networks are denoted by 𝑄′  and 𝜇′  respectively. Let 𝜃  represent the parameters in any of these
networks. Along the same lines, we use 𝜃𝜇 and 𝜃𝑄 to denote the parameters of the online actor and
critic networks respectively.

In DDPG, the Q-table equation is expressed as
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𝑄𝜇 = 𝔼 ቂ𝑟(𝒔[𝑛], 𝒂[𝑛]) + 𝛾ൣ𝑄𝜇൫𝒔[𝑛], 𝜇(𝒔[𝑛 + 1])൯൧ቃ, (4-9)

where, 𝑛, as we will later elaborate, denotes the frame index, 𝛾 is the discount factor, and 𝑟(𝒔[𝑛], 𝒂[𝑛])
is the reward of the state 𝒔[𝑛] and action 𝒂[𝑛]. The loss of the critic network measures the difference
between 𝑄(𝒔[𝑛], 𝒂[𝑛]|𝜽𝑄) and 𝑦[𝑛]; that is

𝐿(𝜃𝑄) = 𝔼[(𝑄(𝒔[𝑛], 𝒂[𝑛]|𝜽𝑄) − 𝑦[𝑛])], (4-10)

where 𝑦[𝑛] is defined as

[𝑛] =  𝑟(𝒔[𝑛], 𝒂[𝑛]) + 𝛾𝑄(𝒔[𝑛 + 1], 𝜇(𝒔[𝑛 + 1])|𝜃𝑄). (4-11)

In this structure, the actor network learns to perform the optimal action in every state while the critic
network learns the long-term expected reward. As a result, the actor network can update the policy
using the critic network as follows

∇𝜃𝜇 𝐽 ≈ 𝔼ൣ∇𝒂𝑄(𝒔, 𝒂|𝜽𝑄)|𝒔=𝒔[𝑛],𝒂=𝜇(𝒔[𝑛])∇𝜽𝜇𝜇(𝒔|𝜽𝜇)|𝑠=𝑠[𝑛]൧. (4-12)

The training in DDPG is described as bellow [LHP+15]

1. Using 𝜇(𝒔[𝑛])  from the actor net, the action is calculated by adding some noise  𝒂[𝑛] =
𝜇(𝒔[𝑛]) + 𝒎[𝑛], where 𝑚[𝑛] is the added noise.

2. Once applied to the environment, this action generates a reward 𝑟[𝑛] and a next state 𝒔[𝑛 + 1].
3. This experience is saved in the replay buffer as the tuple (𝒔[𝑛], 𝒂[𝑛], 𝑟[𝑛], 𝒔[𝑛 + 1]).
4. A set of 𝑁 randomly selected tuples are selected from the buffer as a mini-batch and applied to

the actor and critic nets. The target actor net outputs action 𝜇′(𝒔[𝑛 + 1]) from which the target
critic net can calculate 𝑦[𝑛].

5. The optimizer can now update the online critic net.
6. The online actor net outputs the action 𝒂 = 𝜇(𝒔[𝑛]) to the online critic net from which the

action’s gradient can be calculated as ∇𝑎𝑄(𝒔, 𝒂|𝜃𝑄)|𝒔=𝒔[𝑛],𝒂=𝜇(𝒔[𝑛]).
7. The gradients of the online actor’s gradient can be calculated as ∇𝜽𝜇𝜇(𝒔|𝜽𝜇)|𝒔=𝒔[𝑛].
8. These two gradients can be used to update the online actor net.
9. The target actor and critic nets are softly updated using the following relations.

𝜽𝑄′ ← 𝜏𝜽𝑄 + (1 − 𝜏)𝜽𝑄′

𝜽𝜇′ ← 𝜏𝜽𝜇 + (1 − 𝜏)𝜽𝜇′  ,

were 𝜏 is a small constant.

4.3.3 System model

We consider a WPCN shown in Figure 4.9 consisting of one HAP, which is a DBS in this case and
transfers power wirelessly in the DL to 𝐾 nodes. These nodes harvest the transmitted power in the DL
and transmit information in the UL using the harvested energy. All nodes and the HAP have single
omnidirectional antennas. In what follows, we first describe the frame structure, then the energy, power
and batteries, after that, the UL and DL communication channels, and finally the UL and DL phases.
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Figure 4.9 Schematic of the multimode WPCN.

4.3.3.1 Frame structure

The communication occurs in frames with indices denoted by 𝑛. As shown in Figure 4.10, each frame
is of length 𝑇 seconds and is divided into two phases. The WPT phase takes 𝜏0[𝑛]𝑇 seconds and the
WIT phase takes (1 − 𝜏0[𝑛])𝑇 seconds. The nodes use the WPT phase to harvest energy and the WIT
phase to transmit their data to the DBS in a TDMA fashion. More specifically, the 𝑘-𝑡ℎ user transmits
information with UL transmit power of 𝑝𝑘[𝑛] during 𝜏𝑘[𝑛]𝑇. Needless to say, ∑ 𝜏𝑘[𝑛]𝐾

𝑘=0 = 1, so that the
whole frame is used.

Figure 4.10 Frame structure of the multi-node WPCN using TDMA.

4.3.3.2 Energy, power, and batteries

Each node relies solely on wirelessly transmitted power from the HAP and is equipped with a built-in
battery of capacity 𝑏෠𝑘 that saves the harvested energy during the WPT phase. For simplicity, in this
section, we assume all node batteries have the same capacity, and hence 𝑏෠𝑘 = 𝑏෠.
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At each frame, the battery receives 𝐸𝑘
Σ[𝑛] joules of energy and spends 𝐸𝑘

Δ[𝑛]. We presume the WPT
phase is the first phase and the WIT phase is the second in each frame. As a result, the battery charge
evolves according to the following equation

𝑏𝑘[𝑛] ← max൛0, min൛𝑏෠, 𝑏𝑘[𝑛 − 1] + 𝐸𝑘
+[𝑛]ൟൟ. (4-13)

That is, the charge cannot go beyond the maximum value of 𝑏෠ or become negative. In addition, the DBS
and node antenna transmit power values should be less than or equal to the maximum allowed transmit
power of 𝑃max and 𝑝max respectively. Since higher HAP transmit power always results in higher received
power at the noes, there will be no disadvantage in HAP transmitting with the maximum allowed power.
Hence, we assume the HAP’s transmit power is 𝑃max.

4.3.3.3 Uplink and downlink channels

We assume the Rayleigh block fading model applies to both the DL and UL channels and that the
reciprocity applies. At the 𝑛-𝑡ℎ frame, the channel power gain between the HAP and the 𝑘-𝑡ℎ node is
described by 𝑔𝑘[𝑛], which is exponentially distributed as follows

𝑔𝑘[𝑛]~Exp(𝜇𝑘), (4-14)

in which 𝜇𝑘 is the large-scale fading coefficient that is modelled by 𝜇𝑘 = 𝑐0𝑑0
𝛿𝑑𝑘

−𝛿 , where 𝑐0 is a constant
representing signal power attenuation at a reference distance of 𝑑0, 𝑑𝑘 is the distance of the 𝑘-𝑡ℎ node
from the HAP, and 𝛿 > 0 is the pathloss exponent.

4.3.3.4 Uplink phase

We assume that there is always enough data in the data queues of devices. Using the saved energy in
the previous time frames, the 𝑘-𝑡ℎ node transmits 𝑅𝑘[𝑛] bits of information in the UL

𝑅𝑘[𝑛] = 𝑇𝐵𝜏𝑘[𝑛] log2 ቆ1 +
𝑔𝑘[𝑛]𝑝𝑘[𝑛]

𝜎0
2 ቇ, (4-15)

where 𝐵 is the channel bandwidth and 𝜎2 is the variance of the channel noise.

At each frame, node 𝑘 uses 𝐸𝑘
Δ[𝑛] joules of energy in the battery for UL information transmission, where

𝐸𝑘
Δ[𝑛] = 𝑝𝑘[𝑛]𝜏𝑘[𝑛]. (4-16)

Depending on the state of the system, the UL transmission powers 𝑝𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾 and the UL time
allocations 𝜏𝑘[𝑛], 0 ≤ 𝑘 ≤ 𝐾  can change in every frame and are the optimization variables of the
problem.

4.3.3.5 Downlink phase

The harvested energy at every frame for 𝑘-𝑡ℎ node is

𝐸𝑘
Σ[𝑛] = 𝜂𝑃0𝜏0[𝑛]𝑔𝑘[𝑛], (4-17)

where 𝜂 is the efficiency of the energy harvester, and 𝑝0 is the transmit power of the HAP.
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4.3.4 Resource allocation using the deep deterministic policy gradient method
4.3.4.1 Problem formulation

The optimization variables are 𝑝𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾 and 𝜏𝑖[𝑛], 0 ≤ 𝑘 ≤ 𝐾. On the other hand, the states in
this problem are the battery levels 𝑏𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾 and channel power gains 𝑔𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾 for every
frame 𝑛. However, we are not going to use these variables directly. More specifically, since we will be
using the atanh(∙) function as the last layer of the actor network, it is much easier to transform the actor
variables 𝑝𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾  and 𝜏𝑖[𝑛], 0 ≤ 𝑘 ≤ 𝐾  to 𝑝෤𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾  and 𝜏𝑖̃[𝑛], 0 ≤ 𝑘 ≤ 𝐾  which are
confined to the [−1, +1] interval. This helps us avoid having to hard-limit the variables which is known
to hinder the training of DDPG. In addition, it is known that variables are easier to infer from once they
are normalized. Thus, we will also normalize all state variables to the same interval of [−1, +1]. Finally,
note that our goal is to maximize the long-term expected throughput in the UL. In other words,

lim
𝑛→∞

෍
1
𝑁

෍ 𝑅𝑘[𝑛]
𝑁

𝑛=1

𝐾

𝑘=1

. (4-18)

In the following subsections, we define the states, actions and reward.

4.3.4.2 States

As previously alluded to, the state variables in this problem are the battery and channel states of node
𝑘 at frame 𝑛, or 𝑏𝑘[𝑛] and 𝑔𝑘[𝑛]. Since the battery state has a clear maximum of 𝑏෠, using a simple linear
transformation

𝑏෨𝑘[𝑛] = 2𝑏𝑘[𝑛]/𝑏෠ − 1, (4-19)

we can easily feed this parameter into the DDPG algorithm. However, the channel gain 𝑔𝑘[𝑛] is
unbounded. In order to make it easier for the algorithm to use this parameter, we use the following
transformations

𝑔[𝑛] = −𝜇𝑘 log ቆ
(𝑔෤[𝑛] + 1)

2 ቇ, (4-20)

or

𝑔෤𝑘[𝑛] = 2 exp(−𝑔𝑘[𝑛]/𝜇𝑘) − 1. (4-21)

In this way, 𝑔෤[𝑛] bounded between −1 and 1 leads to 𝑔[𝑛] between 0 and +∞. Furthermore, a uniform
distribution for 𝑔෤[𝑛] leads to exponential distribution of 𝑔[𝑛].

Thus, the state is 2𝐾-tuple represented as

𝒔[𝑛] = ൫𝒈෥[𝑛], 𝒃෩[𝑛]൯. (4-22)

4.3.4.3 Actions

At each frame, there are two variables to control for each node. These variables are 𝜏𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾
and 𝑝𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾 as well as 𝜏0[𝑛] which does not correspond to any node.
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Since the node UL powers should satisfy 0 ≤ 𝑝𝑘 ≤ 𝑝max, we can simply apply a linear transformation to
place them in the [−1, +1] range. However, because the distances of the nodes to the HAP can change
the UL transmit power needed to achieve a certain SNR logarithmically, we use another transformation
for the UL power. The required transformation should map [−1, +1] to the [0, 𝑝max] range and at the
same time make it easier for the algorithm to find the optimal value.

Assuming that the node distances to the HAP vary between 𝑑min and 𝑑max we can transform the power
using the following semi-logarithmic transformation

𝑝෤𝑘 = 2 log ൬1 + 𝑠
𝑝𝑘

𝑝max
൰ / log(1 + 𝑠) − 1, (4-23)

where 𝑠  is a scaling parameter which we set at 𝑠 = (𝑑max/𝑑min)𝛿 . In some sense 𝑠 is a scaling
parameter which determines how logarithmic or linear this transformation is. This is so because this
equation is approximately linear bellow and around 𝑝max/𝑠 and approximately logarithmic above this
value. Using this transformation, 𝑠 can be expressed in terms of 𝑝෤𝑘 as

𝑝𝑘[𝑛] =
𝑝max

𝑠 ቆ(1 + 𝑠)൬𝑝෤𝑘[𝑛]+1
2 ൰ − 1ቇ. (4-24)

The same argument applies to 𝜏𝑘[𝑛], 0 ≤ 𝑘 ≤ 𝐾. As a result, we can apply the same transformations
that we used for 𝑝𝑘[𝑛], 1 ≤ 𝑘 ≤ 𝐾 to 𝜏𝑘[𝑛], 0 ≤ 𝑘 ≤ 𝐾

𝜏𝑘[𝑛] = ቆ(1 + 𝑠)൬𝜏෤𝑘[𝑛]+1
2 ൰ − 1ቇ /𝑠. (4-25)

Note that we have defined  𝜏𝑘̅[𝑛] , not  𝜏𝑘[𝑛] . The reason is that 𝜏𝑘[𝑛], 0 ≤ 𝑘 ≤ 𝐾  are additionally
constrained by ∑ 𝜏𝑘[𝑛]𝐾

𝑘=0 = 1. Hence, we use 𝜏𝑘̅[𝑛], 0 ≤ 𝑘 ≤ 𝐾 to define 𝜏𝑘[𝑛], 0 ≤ 𝑘 ≤ 𝐾 as follows

𝜏𝑘[𝑛] =
𝜏𝑘[𝑛] + 1

2 × ∑ 𝜏𝑙
𝐾
𝑙=0 [𝑛]. (4-26)

The advantage is that, using 𝜏𝑘̅[𝑛], 1 ≤ 𝑘 ≤ 𝐾, we don’t have to implement extra constraints.

In summary, the action is a 2𝐾 + 1-tuple represented as

𝒂[𝑛] = (𝝉෤[𝑛], 𝒑෥[𝑛]).

4.3.4.4 Reward

We use the Bellman equation to define the long-term average sum-rate

𝑄𝜇(𝒔[𝑛], 𝒂[𝑛]) = 𝔼[𝑅𝑘[𝑛] + 𝛾𝑄𝜇(𝒔[𝑛], 𝒂[𝑛])], (4-27)

where 𝜈 is the slot-oriented policy [JZ14]. This has the added benefit that it is much easier to see if the
trained agent is outperforming the traditional scheme during training.

4.3.5 Simulation results
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The training is divided into intervals called episodes. Each episode starts at a random initial state
(battery value and channel gain) and proceeds for 200 consecutive time frames. At the end of each
episode, the state is reset to another random initial state, which, sets the battery to different initial
values. We train the agent for 1000 episodes for each node configuration.

In the following, we first enumerate the WPCN parameters and then describe the DDPG setup. After
that, we present the simulation results in two scenarios.

4.3.5.1 WPCN setup

We use a network having five nodes and one HAP. The fading distribution is assumed to be Rayleigh.
The following parameters are assumed:  𝑃0 = 30dBm , 𝑃max = 10dBm . 𝐵 = 100KHz , 𝑇 = 1ms , 𝑏෠ =
−20dBm, 𝛿 = 3, 𝜎2 = −120dBm.

4.3.5.2 DDPG Setup

The network structure shown in Figure 4.11 is considered for actor and critic networks. Since the output
of the actor network needs to be in the range [−1, +1], we use an atanh(∙) for the final layer of this
network. For the other cases we use the ReLU layer. We set the learning rates of the actor and critic
nets to 2 × 10−5 and 2 × 10−4 respectively. The agent discount factor 𝛾 is set to 0.99 while the noise
variance is set to 0.2 and the noise variance decay rate is set to 1.7 × 10−5. Finally, we choose a mini
batch size of 128 and a buffer length of 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 × 𝑠𝑖𝑚𝑙𝑒𝑛𝑔𝑡ℎ so that the buffer never overflows.

Figure 4.11 The network structure of the actor and critic. FC stands for Fully Connected and 𝑙𝑠 is the
size of FC layers.

4.3.5.3 Performance comparison

We test all the saved agents for the following scenarios and choose the one with the highest minimum
relative throughput.

In the first scenario, we keep the distance of node 1 fixed and linearly increase the distance of the other
nodes from 1m to 5m. In other words, we define the distances of the nodes to the HAP according to 𝑑𝑘 =
1m + (𝑘 − 1)(𝑥 − 1m)/4. The sum-rate of the nodes in this scenario is plotted in Figure 4.12. As can
be seen, as 𝑥  increases, the sum-rate in both methods decreases which is anticipated since the
distances of nodes 2 through 5 increase with the increase in 𝑥. However, relative to the slot-oriented
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method, the sum-rate is higher in the DDPG method. The increase in the sum-rate is from 1.5% at 𝑥 =
1m to 4.5% at 𝑥 = 4m. The lower increase at 𝑥 = 1m is due to the fact that at this distance the nodes
are the most competitive for the channel resources. As 𝑥 increases, the nodes distances become more
and more different leading to less competition and hence higher throughput over the slot-oriented
method.

Figure 4.12 The sum-rate in the first scenario in which 𝑑𝑘 = 1m + (𝑘 − 1)(𝑥 − 1m)/4.

In the second scenario, we keep the distance of node 5 fixed and linearly increase the distance of the
other nodes from 1m to 5m. In other words, we define the distance of the nodes according to 𝑑𝑘 = 5m +
(𝑘 − 5)(𝑥 − 5m)/4. The sum-rate of the nodes in this scenario is plotted in Figure 4.13. As can be seen,
compared to the first scenario, the sum-rate decreases faster in both methods which is to be expected
because at the same 𝑥 in this scenario, the nodes distances are equal to or greater than those in the
first scenario. The increase in the sum-rate is from 4% at 𝑥 = 1m to 14% at 𝑥 = 4m. Note that since at
the same 𝑥 the node distances to the HAP are equal to or greater than those in the first scenario.

Figure 4.13 The sum-rate in the second scenario in which 𝑑𝑘 = 5m + (𝑘 − 5)(𝑥 − 5m)/4.

4.4 Summary

This chapter considered the wireless networking aspects of AI-assisted technologies in wireless
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communication. We studied two problems in this realm, namely learning to demodulate from few pilots
via meta-learning, and resource allocation in WPCN using DDPG.

In section 4.2, we proposed the use of online meta-learning for IoT scenarios by adapting state-of-the-
art meta-learning schemes, namely MAML, FOMAML, REPTILE, and CAVIA, in a unified framework.
Extensive numerical results validated the advantage of meta-learning as compared to conventional ML
schemes. Moreover, comparisons among the mentioned meta-learning schemes reveal that MAML and
CAVIA are preferable, with each scheme outperforming the other in different regimes in terms of amount
of available meta-training data.

In section 4.3, we optimized a multi-node WPCN using the DDPG. Instead of the conventional schemes
which maximize the sum-rate of such a scheme in every frame and is hence only optimal in an AWGN
channel, the proposed scheme optimizes the long-term sum-rate of the system and, hence, yields a
higher sum-rate in a flat-fading channel. Simulation results showed that the DDPG algorithm, in
combination with the HTT scheme is able to learn to optimize a WPCN of five nodes and outperform
the sum-rate achieved in the conventional schemes.
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5 AI on edge

5.1 Overview

In AI on edge, AI offers edge computing approaches, algorithms and methodologies [DZW+20]. AI on
edge can further be categorized into model training and model inference. Nevertheless, in this
document, we only consider model training, where the purpose is to seek new frameworks for model
training on the edge. Figure 5.1 is a schematic showing some of the problems discussed and some of
the technologies exhibited in chis chapter.

Figure 5.1 Schematic of the AI on edge.

As can be seen in Figure 5.1, using the technologies developed in this chapter, UAVs can train various
ML and deep learning algorithms efficiently over the dynamic wireless communication environment that,
given the huge amount of data that the image capturing sensors on the drone gather, would have
otherwise been impossible.

In section 5.2, we analyse three popular distributed model training methods, namely FL, SL, and SFL,
and compare their performances in terms of convergence time, processing delay and communication
overhead. A simulation is run on image recognition tasks, using the classical public image dataset,
MNIST, which consists of handwritten digit images. The simulation results show that SL and FL with
five local training show negligible accuracy degradation relative to central learning while SFL shows
relatively lower accuracy. On the other hand, SL shows significantly high processing time delay and
communication overhead, which decreases with increasing the number of clients. On the other hand,
these two performance indices stay the same in FL.

Section 5.3 is a study on a communication-efficient on-device ML framework suitable for operation in
cellular networks with asymmetric UL-DL capacity. More specifically, we design a distributed learning
technique, coined Mix2FLD, which considers both test accuracy and latency in a non-symmetric
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environment. Numerical evaluation shows that Mix2FLD outperforms FL in terms of both test accuracy
and latency on cellular networks with asymmetric UL-DL capacity. In addition, Mix2FLD's test accuracy
promptly converges in both iid and non-iid data sets. This convergence is in proportion to the number
of participating devices.

Section 5.4 studies various types of SL as well as FL and federated distillation and compares their
performances. We divide SL based on whether the training method is performed in serial or in parallel,
as well as whether the upper layer is concatenated or not. This results in three types of SL: sequential
SL, SL architecture 1 (parallel & concatenated SL), and SL architecture 2 (parallel & non-concatenated
SL). Simulation results show that both SL architecture 1 and FL have the best performance in terms of
test accuracy. However, FL takes a long time to converge and a device memory size issue may occur
at the inference step for SL architecture 1. Considering all these points, SL architecture 2, which utilizes
averaging in the pooling layer to reduce the dimension of the upper layer, is the best architecture.

Section 5.5 is a study on the trade-off of accuracy and latency as the mini-batch size changes in SL, as
well as the optimal mini-batch size that maximizes objective function which reflects both accuracy and
latency. The optimization problem shows that by changing a single parameter in the objective function,
we can adjust the test accuracy and latency. When the test accuracy in the objective function is the
largest, the test accuracy decreases and the optimal mini-batch size both decrease. In contrast, when
we increase the test accuracy, the test accuracy and the optimal mini-batch size increase.

Finally, to improve the outage-sensitive feature of SL, we supplement additional UL-DL phases to the
existing SL method in section 5.6. We evaluate the test accuracy and latency by allocating a given
resource in various ways between the newly introduced UL-DL and the existing SL UL-DL. Numerical
simulations show that, using this method, the test accuracy increases by up to 19.4%, while the latency
increases by up to 6.35 times.

5.2 Comparative analysis of distributed model training

Distributed model training is a paradigm in which a model is trained on multiple microprocessors, also
known as worker nodes for the purpose of speeding up training, and/or enhancing data privacy and
security. In this section, we assess three common model training methods, namely FL, SL, and SFL.

5.2.1 Federated learning

To extract information from the generated big data, ML models, especially deep learning, have become
important to train the big data and obtain the trained models which then can be directly used to predict,
classify or recognise new input. While the big data is always generated by different distributed users,
the general idea is to let them send their local data to a central server to perform model training. This
method, however, not only incurs a large communication delay, but also reveals users’ private
information. With the development of integrated circuit, local devices become more powerful and can
support computing engines such as the CPU, GPU and DSP (e.g., energy efficient Qualcomm Hexagon
Vector extensions on Snapdragon 835 [QualcoMM19]) for solving diverse ML problems.

As a technique to overcome these challenges, FL first uses the computing abilities of distributed users
to train their local models with their local dataset. A central parameter server then collects their local
models and perform model averaging to get the global model, which is sent back to each user. Finally,
each user can update their local models with this global model [MMR+17].  With FL, users don’t need
to send their data to the central server so that the communication cost is reduced, and their privacy is
protected. By only sharing model parameters, FL benefits wireless communication networks, like
cellular networks, UAV networks, and IoT networks, which in return reduces communication cost and
saves bandwidth, as well as achieves distributed learning.
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However, due to the dynamic environment and limited resources, it is challenging for wireless
communication links to provide reliable model parameters for FL, and as a result, many research works
have been investigating this problem through user scheduling and resource allocation [AGK+20,
KXN+20, CYS+19], enabling ultra-reliable, low-latency and highly efficient communication links
[SMS+19, PTB+20], and designing incentive mechanism for users to contribute training [ZLQ+20].
Reference [AGK+20], for example, proposed a novel device scheduling policy and resource allocation
techniques to choose the participant users in each FL iteration while allocating limited wireless
resources considering channel conditions and the significance of the local model updates at the
devices. A FL-based joint transmit power and resource allocation framework was proposed in
[SMS+19], and it was proved to have as good accuracy as the centralized solution but with up to 79%
reduction in the amount of exchanged data. Reference [CYS+19] provided a novel performance
optimization scheme by considering a fundamental connection between the performance of FL
algorithms and the underlying wireless networks. References [KXN+20, NY19] designed client selection
scheme to make FL operate more reliably over mobile networks. Reference [KXN+20] focused on
selecting the users with reliable dataset, while resource conditions of users were considered while
selecting them to be aggregate by the server [NY19].  Moreover, [ZLQ+20] proposed a DRL-based
incentive mechanism and determined the optimal pricing strategy for the parameter server and the
optimal training strategies for edge nodes.

Figure 5.2 illustrates the framework of federated averaging method proposed in [MMR+17] where with
aim of solving an ML problem, each user 𝑢𝑖 is tries to train a local model with its own fraction of dataset
to minimize the loss function 𝑙𝑖(𝜔), where 𝜔 represents the model parameters.
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Figure 5.2 Illustration of FedAvg method [MMR+17].

Assuming the data that needs to be trained is distributed over 𝑁 users, and that |𝐷𝑖| is the fraction of
the whole dataset owned by user 𝑢𝑖, the ML optimization problem is formulated as

min
𝜔∈𝑅

෍
|𝐷𝑖|

∑ |𝐷𝑖|𝑁
𝑖=1

𝑙𝑖(𝜔)
𝑁

𝑖=1

(5-1)

To solve this problem, the federated averaging [MMR+17] algorithm was proposed with each user 𝑢𝑖
locally training its local dataset once and taking one step of gradient descent such that the local model
parameters 𝜔𝑖 are updated. Then, the BS server takes a weighted average of all the local models and
generates the global model as
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𝜔𝑔
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|𝐷𝑖|
∑ |𝐷𝑖|𝑁

𝑖=1
𝜔𝑖

𝑡

𝑁

𝑖

(5-2)

After that, the server distributes the global model back to each user, and finally each local model is
updated.

5.2.2 Split learning

SL was first proposed in [GR17] to train DNNs over multiple data sources while mitigating the need to
share raw labelled data directly. Let us define a DNN as a function 𝐹, which has a chain structure
including a sequence of layers {𝐿0, 𝐿1, … , 𝐿𝑁}, with the input data 𝐷. The output of this function is 𝐹(𝐷)
which is computed by sequentially going through the layers as

𝐹(𝐷) = 𝐿𝑁 ቀ𝐿𝑁−1 … ൫𝐿0(𝐷)൯ቁ (5-3)

After obtaining the output, loss function 𝑙(output, label) is used for computing the gradient of the final
layer. Then the gradients are back-propagated over each layer to generate gradients of the previous
layer and to update the current layer. Let {𝐿1

𝑇, 𝐿2
𝑇 , … , 𝐿𝑁

𝑇 } denote the backpropagation over each layer
and 𝐹𝑇(∇𝑙)  denote the backpropagation over the entire NN. Similar to forward propagation, the
backpropagation process over the layers is

𝐹𝑇(∇𝑙) = 𝐿1
𝑇 ቀ𝐿2

𝑇 … ൫𝐿𝑁
𝑇 (∇𝑙)൯ቁ (5-4)

Figure 5.3 illustrates the SL framework with multiple data entities in [GR18], where each user holds a
fraction of the dataset while they contribute to training the DNN 𝐹(𝐷). User 𝑢1 is initialized with the first
few layers of 𝐹(𝐷) as 𝐹𝑎(𝐷1) = {𝐿0, 𝐿1, … , 𝐿𝑛} with its weights indicated by 𝜔1,1, and the BS is initialized
with the rest of the layers of 𝐹(𝐷) as 𝐹𝑏(𝑎) = {𝐿𝑛+1, 𝐿𝑛+2, … , 𝐿𝑁} with their weights as 𝜔𝑖,2. The training
process begins with 𝑢1, which trains its local 𝐹𝑎(𝐷1) with its local dataset, and then sends the output
of 𝐹𝑎(𝐷1), 𝑎1

𝑡 , to the BS for training 𝐹𝑏(𝑎1). Afterwards, the BS calculates the gradients of the layer 𝐿𝑛,
𝑔1

𝑡 , and send them back to 𝑢1. Then, 𝑢1 backpropagates the gradients it received. Before user 𝑢2 starts
training, it updates its local weights 𝜔2,1

𝑡  with last trained user 𝑢1’s weights 𝜔1,1
𝑡 . This repeats until the

training of the last user is finished. Then one global epoch is finished.
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Figure 5.3 Illustration of SL over multiple users [GR18].

Several configurations of SL were illustrated in [VGS+18] to meet different practical settings.
Comparisons with other distributed learning algorithms, including large batch SGD and FL
demonstrated that SL is dramatically resource efficient and is scalable to large-scale settings.
Reference [SVG+19] compared the communication efficiencies of both popular distributed ML
approaches, SL and FL. By deploying them in various practical scenarios, [SVG+19] shows that
increasing the number of clients or model size favours SL over FL, while FL is more communication
efficient with increasing the number of data samples and keeping the number of clients and model size
small. With real-world IoT network settings, [GKA+20] confirmed the same findings in [SVG+19] by
evaluating splitNN and FL in terms of communication overhead, time and power consumption.
Moreover, a HetSLAgg was proposed in [KPB+20], where the BS-side NN segment fuses RF signals
and uploads image features without collecting raw images. It was, furthermore, demonstrated that this
approach could reduce the prediction error by 44% and achieve over 20% gains in terms of
communication and energy cost reduction. Reference [JK20] also proposed a parallel SL method, in
which mini-batch sizes are selected and trained at each node and then trained as a full batch at the
server.

5.2.3 SplitFed learning

Through the discussions of two recently popular distributed ML approaches, that is, FL and SL, FL and
SL show contrasting strengths and weaknesses. In an effort to eliminate the drawbacks of the two
approaches, [TCC20] proposed a novel approach, called SFL, which amalgamates the two approaches.
Figure 5.4 illustrates the SFL framework of 𝑠𝑝𝑙𝑖𝑡𝑓𝑒𝑑𝑣1 in [TCC20]. SFL combines the strength of FL
with parallel training among distributed clients, and the strength of SL with splitting the network into
client-side and server-side during training.
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Figure 5.4 Illustration of SFL framework [TCC20].

In this approach, users {𝑢1, … , 𝑢𝑖 , … , 𝑢𝑁} train their local client-side models 𝐹𝑎(𝐷1), … , 𝐹𝑎(𝐷𝑁) with their
local datasets {𝐷1, … , 𝐷𝑁} in paralel. Then, they pass the output of local models, {𝑎1

𝑡 , … , 𝑎𝑁
𝑡 }, to the BS

server, which is assumed to have high computation capacity, and can process the forward propagation
and backpropagation on server-side models 𝐹𝑏(𝑎1), … , 𝐹𝑏(𝑎𝑁) in parallel. Afterwards, it calculates the
gradients of the final layer, backpropagates and updates the server-side models, and then sends the
gradients of the cut layer {𝑔1

𝑡 , … , 𝑔𝑁
𝑡 } to respective clients for their backpropagation and client-side local

models update. Then, the server updates its global model weights 𝜔𝑔,2
𝑡  by performing a weighted

average of the parallelly trained models weights ൛𝜔1,2
𝑡 , … , 𝜔𝑁,2

𝑡 ൟ, and the clients send their local model
weights ൛𝜔1,1

𝑡 , … , 𝜔𝑁,1
𝑡 ൟ to a parameter server, which conducts federated averaging of client-side local

update and sends the generated global model weight 𝜔𝑔,1
𝑡  to all the participant clients. This process,

defined as one global epoch, repeats until convergence is achieved.

5.2.4 Comparative performance analysis of federated learning, split learning
and SplitFed learning

The simulations are run on a laptop with NVIDIA RTX 2070 GPU and Intel i7-10750H CPU, where the
server program is run on the GPU, while the clients’ program is run on the CPU. During the experiments,
we investigate the performance by observing the processing time (including training time and
transmission time) with respect to global epochs, and the amount of data communication by each client.
In our setup, we assume that all participants update the model in each global epoch.

The classical public image dataset, MNIST dataset, which consists of handwritten digit images of 0 to
9 (i.e., 10 classes), is considered to conduct our experiment. Each image has 28 × 28 pixels with a pixel
value ranging from 0 to 255. It has a total of 60000 training and 10000 test samples. The ML model
architecture Net is considered using CNN with two convolution layers and two fully connected layers. It
uses two 5 × 5 sized kernels in its layers. For all experiments in SL and Splifed, the network layers are
split at the second layer (after 2D MaxPool layer).
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By conducting experiments with MINST dataset, the comparison results on test accuracy, processing
time delay and communication overhead of these algorithms are illustrated as follows.

5.2.4.1 Convergence analysis

LL where each client has its own dataset and trains its own model locally, and CL where the server
receives the whole dataset from all the clients, are considered as the benchmarks. As shown in Figure
5.5, all the experiments were conducted with 10 clients and one server, and all the learning algorithms
have converged within 50 global epochs. As can be seen in Figure 5.5, CL has the highest test
accuracy, while the LL has the lowest. This is because LL has limited dataset used for training the
learning model. Additionally, SL has the closest test accuracy in CL, FL with 5 local training before
global model average has almost the same accuracy as SL, while FL with one local training is slightly
worse. Finally SFL shows similar accuracy performance as FL(1).

Figure 5.5 Test convergence of different learning with ten clients.

5.2.4.2 Processing time

To show the time efficiency of different learning algorithms, we analyse the processing time taken for
one global epoch (the time cost to train the whole dataset) shown in Figure 5.6. Here, the processing
time mainly contains training time and transmission time. CL contains the training time of the server and
the transmission time of all the clients by transmitting their local dataset which is performed in parallel.
In LL, the clients train their own dataset locally. This can be done in parallel as well, which means it only
takes local training time. FL contains training time on both the server and clients, as well as transmission
time which depends on the model size and the communication conditions of the worst client. So, the
processing time per global epoch stays the same with increasing the number of clients since clients
carry out the training in parallel. For SL, the total processing time for one global epoch depends on the
product of the number of clients and the time to process one global epoch by the clients and the server,
while in SFL, all the clients train their local models simultaneously and the server can be a
supercomputer that can train the edge models from all the clients in parallel. Therefore, the processing
time of SFL is much shorter. Moreover, in SL and SFL, the transmission time depends on the number
of data samples that each client has as well as the communication conditions. Hence, SFL is trained
faster with increasing the number of clients.
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Figure 5.6 Processing time delay of different learning algorithms.

5.2.4.3 Communication overhead

The communication overhead including (UL and DL overhead) indicates the operability of a distributed
learning approach in a resource constrained environment. The comparisons of communication
overhead are performed under the amount of communication overhead per client in one global epoch
shown in Figure 5.7. CL has the communication overhead by each client uploading their local dataset,
while LL has no communication overhead where each client trains their dataset locally. FL contains
local clients’ model parameters UL and global model parameters distribute, which is independent of the
dataset size of the client. For SL and SFL, we observed the same amount of communication overhead
and it’s reducing with the increasing client number. This is because in SL and SFL, each client needs
to upload the activations and download the gradients of the cutlayer, which depend on the dataset size
of each client.

Figure 5.7 Communication overhead of different learning algorithms.

5.3 Mix2FLD: downlink federated learning after uplink federated distillation
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with two-way mixup

When distributed ML operates on a cellular network consisting of several handheld devices and a
server, the asymmetry of UL and DL capacity due to the low transmit power of the handheld devices
poses challenges to learning. FL has a high test accuracy, but because of exchanging model weight,
outages occurring frequently especially in the UL transmission result in large latency. FD can solve the
outage problem, but its test accuracy is very low. Thus, our goal in this section, is to design a distributed
learning technique that considers both test accuracy and latency.

Assuming that distributed learning is taking place in a communication system consisting of servers and
handheld devices, there occurs an imbalance in UL and DL capacity due to the transmission power gap
between devices and servers.

FL proposed in [YLC+19] is the most widely used privacy-preserving technique among distributed
learning techniques in which the devices and the server exchange model weights. Yet, in the case we
just discussed the UL capacity is limited and hence when the device sends the model weights to the
server, a communication bottleneck is highly probable.

In the case of FD proposed in [JOK+18], in order to solve the communication problem that occurs when
such distributed learning runs on an actual network, output distribution with a very small communication
payload size is exchanged, but the test accuracy is relatively inferior.

In the case of FD proposed in [JOK+18], in order to solve the communication problem that occurs when
such distributed learning runs on an actual network, output distribution with a very small communication
payload size is exchanged, but the test accuracy is relatively inferior.

To ensure test accuracy while resolving UL-DL asymmetric capacity, in our proposed Mix2FLD, we
utilize output distribution at UL as in FD and model weight at DL as in FL. At this time, the central server
shares some samples of each device for output-to-weight conversion. To solve the sample privacy
leakage problem that occurs, using the mixup algorithm proposed in [ZCD+18], each device uploads
the sample passed through the mixup and the mixing ratio information used during the mixup to the
server, and the server generates an inversely-mixed sample with the same label as that of the raw
sample of the device through inverse mixup depending on the mixing ratio. Based on the generated
inversely-mixed sample and the uploaded output distribution, the server side creates a global model
through knowledge distillation proposed in [HVD14]. The overall process of Mix2FLD is illustrated and
elaborated in Figure 5.8 and Algorithm 5.1 respectively.



Project No 815191

Date 12.01.2021

D4.3 Final report on AI-assisted networking and edge computing Dissemination Level (PU)

https://primo-5g.eu/  - @PriMO5G 81

Figure 5.8 Operation of Mix2FLD, Mixup and Inverse-Mixup.

Algorithm 5.1 Operation of Mix2FLD.

Figure 5.9 shows the performance comparison with distributed ML algorithms such as FL and FD,
including Mix2FLD, in asymmetric and symmetric UL-DL capacities, respectively.
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Figure 5.9 Learning curves of distributed ML under asymmetric & symmetric channels.

On the other hand, in a symmetrical environment, the transmission power of devices is 40dBm
[3GPP16-36942]. This value is the same as that at the server, which can be considered an ideal channel
environment. In this environment, FL, which has the largest amount of information exchanged through
UL or DL, has the highest performance in terms of test accuracy. However, in an asymmetric
environment, where the transmission power of devices is 23dBm [3GPP16-36942], two cases may
occur: when FL is employed, frequent outages occur in the UL, and when FD is used, communication
is successful, but accuracy is not high. On the other hand, the proposed Mix2FLD, in addition to having
the highest performance in such an asymmetric environment, achieves considerably high performance
in a symmetric environment.

Figure 5.10 shows the average and variance of the test accuracy of Mix2FLD as the number of devices
is changed in iid and non-iid data set environments, respectively. In both iid and non-iid environments,
as the number of devices increases, the average of the test accuracy gradually increases, while the
variance decreases. In particular, it can be seen that the trend is more clearly obvious in iid case.

Figure 5.10 Test accuracy of Mix2FLD with respect to the number of devices.

5.4 Wireless split learning

SL, first proposed in [GR17] is implemented in a sequential manner which prevents processing multiple
inputs simultaneously. By utilizing parallel computing in SL, performance can be improved in terms of
test accuracy or overhead incurred in forward and back propagation. With the standalone structure
shown in Figure 5.11 as the baseline, we propose two types of SL, namely SL architecture 1 and SL
architecture 2, both shown in Figure 5.11. A common idea for training in SL is to synchronize the data
labels of data samples across devices. SL architecture 1 and SL architecture 2 can be classified by the
input dimension of the upper layer stored in the server. A model whose input dimension linearly
increases with the number of devices is SL architecture 1, and a model with a fixed input dimension is
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SL architecture 2. In particular, in the case of SL architecture 2, in order not to change the input
dimension of the server even when the number of devices change, techniques such as averaging or
random scheduling can be used.

Figure 5.11 Structures of standalone, SL architecture 1, and SL architecture 2.

Figure 5.12 Learning curves of various distributed ML including various types of SL.

Figure 5.12 compares the performance of the proposed SL architecture 1, and SL architecture 2 using
averaging and random scheduling, as well as, FL and FD. In terms of test accuracy, both FL and SL
architecture 1 have high accuracy. Nevertheless, considering the latency, the performance of SL
architecture 1 is the highest.

In addition, after learning is completed, considering that all global models are downloaded and used in
the inference stage, in the case of SL architecture 1, the input dimension of the upper layer increases
in proportion to the number of devices. Thus, it is practically limited by the memory size or computation
power. Moreover, when the environment with many outages is considered, the time it takes to reach
convergence in SL architecture 1, which has more weight to learn, may be longer. Considering these
communication and computing-related constraints, while the test accuracy of SL Architecture 2 is
slightly inferior to that of Architecture 1, SL Architecture 2 is extremely efficient in terms of latency.
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5.5 Accuracy-latency trade-off for mini-batch size
In SL, based on the intermediate layer, the devices have the partition of the lower layer and the
parameter server has the upper layer. In this structure, for model update, each device transmits the
output of the cut layer (forward-propagation), and the server transmits the gradient information (back-
propagation) through DL. Compared to other distributed learning techniques, SL communicates a
smaller packet size more often, and this leads to capacity loss due to the packet sizes being small.

In addition, since forward propagation and back propagation in SL are entirely dependent on
communication, an increase in payload size (which is proportional to batch size) results in a gain in test
accuracy but tends to increase the latency. Especially, when the MSGD technique is applied, a trade-
off between test accuracy and latency occurs which depends on the mini-batch size. Therefore, we
examine the above trends as the batch size changes in SL, and find out what the optimized batch size
is.

When applying the MSGD to SL, each device transmits the output value to the parameter server after
passing the total number of samples of mini-batch size in parallel through the local model, and the
server calculates the gradient through the average loss and broadcasts it to the device. This procedure
is periodically repeated until the local model converges.

Suppose that the number of samples reflected during local update is fixed, that is, (mini batch size) ×
(number of communication rounds)  is fixed. When mini-batch size increases by 𝑁  times, the UL
payload size also increases by 𝑁 times. However, since the UL transmission period decreases by 1/𝑁
times, the UL traffic per unit time remains constant. In case of DL, it has the same payload size
regardless of the mini-batch size, but the transmission period changes in inverse proportion to mini-
batch size. Thus, as mini-batch size increases, the communication payload size per unit time
decreases.

Next, since SL exchanges a single intermediate layer’s instantaneous activation and gradient whose
corresponding packet length can be very short, when the packet length is very small, the Shannon’s
capacity formula is no longer accurate. Therefore, the following capacity model [YVS10] is used

𝑅 = 𝐶 − ඨ𝑉
𝑁 𝑄−1(𝜀) +

1
2𝑁 log2 𝑁

Here, as mini-batch size increases, the UL payload size 𝑁 decreases which leads to an increase in data
rate.

Also, the number of iterations required for convergence 𝑁Update is in inverse proportion to the payload
size 𝑁 as proposed in [PKK+19], which is as follows

𝑁Update = 𝑁∞ +
𝛼
𝑁

Finally, in terms of accuracy, when comparing gradient updates multiple times with a small mini-batch
size and relatively fewer gradient updates with a large mini-batch size, the former performance is higher.
This means test accuracy and latency trade-off for mini-batch size.

Figure 5.13 shows the test accuracy and latency in SL while mini-batch size changes from 23 to 211. It
can be seen that when the mini-batch size increases, both the test accuracy and latency decrease.
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Figure 5.13 Test accuracy and latency with respect to batch size in SL.

To find the optimal mini-batch size that maximizes the objective function, we define the objective
function to be 𝑆𝑏 − λ𝑇𝑏, where 𝑆𝑏 and 𝑇𝑏 are the test accuracy and test latency respectively.

Figure 5.14 shows the objective functions with respect to different 𝜆 and batch sizes. In Figure 5.14, as
𝜆  increases, the optimal batch point shifts to the right. This means that the larger 𝜆 is, the greater the
proportion of latency in the objective function is, and accordingly, it changes in the direction of further
minimizing the latency, that is, in the direction of increasing the mini-batch size.

Figure 5.14 Optimal batch size with respect to different 𝜆

Given the defined objective function, when λ is 0 (considering test accuracy only) and 0.1, the optimal
mini-batch size is 27, and when 𝜆 is 1 and 10, the optimal mini-batch size is 29.

5.6 UL resource allocation

We introduced SL in subsection 5.2.2 and section 5.4 as a technique to train DNNs over multiple data
sources while alleviating the need to share raw labelled data directly. However, some of the limitations
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of SL are

1. When outage occurs in either UL or DL, the weight is not updated. In other words, it is sensitive
to outage.

2. Where the non-iidness of samples of devices is too severe, the SL training based on label-
synchronous may not proceed properly.

To compensate for the performance degradation resulting from these limitations, we introduce
additional UL-DL communication that exchanges local gradient information (from devices that have
successfully received gradient information) and global gradient information (obtained from server by
averaging local gradient information) after UL-DL communication that exchanges gradients and outputs
from the intermediate layer of the existing SL. We use UL1 to denote the UL transmission phase that
sends the output of the intermediate layer and UL2 to represent the UL transmission phase by devices
which have successfully received UL1.

In this structure, both UL communications (devices to server) can be communication bottlenecks.
Therefore, under the assumption that the outage probability in the DL is 0, we investigate the result of
resource allocation of UL1 and UL2. Here, a trade-off occurs for resource allocation of UL1 and UL2.

First, if more resources are allocated to UL1, the number of stragglers who fail to upload local output
information decreases. Instead, when receiving local gradient information from receivers, the probability
of occurrence of outage is high, and as a result, the probability of transmission failure or low quality of
the averaged gradient information to be given to stragglers is high.

Conversely, when the allocated resource blocks in UL2  increase, a lot of stragglers occur in UL1 .
Instead, in  UL2 , receivers can upload more local gradient information, and stragglers can be
compensated through higher quality global gradient information.

In order to check the trade-off of UL1 and UL2 resource allocation and the optimal resource allocation
method, we have a total of 10  devices in a TDMA environment. No device has any samples
corresponding to 2 labels out of the total 10 labels.

Table 5.1. Test accuracy, latency, and straggler for various resource allocation methods. There are a
total of 5500 slots of length 1ms.

Number of slots in UL1 300 400 500 600 700
Number of slots in UL2 5200 5100 5000 4900 4800
Number of stragglers 10 8 4 1 0
Number of successfully uploaded local gradients 0 2 6 1 0
Number of stragglers who received global gradients 0 8 4 1 0
Test Accuracy 𝑆𝑏 0.128 0.269 𝟎. 𝟕𝟐𝟖 0.525 𝟎. 𝟓𝟑𝟒
Latency 𝑇𝑏 (Averaged per 1 cycle) 0.732 1.4705 𝟑. 𝟗𝟔𝟐𝟐 2.7196 𝟎. 𝟔𝟐𝟑𝟗

In Table 5.1, the total number of time slots allocated to UL1 and UL2 is 5500, and the duration of each
time slot is 1ms.The number of slots allocated to UL1 varies from 300 to 700, and accordingly, the
number of slots allocated to UL2 varies from 5200 to 4800. When 300 slots are allocated to UL1, the
maximum number of stragglers is 10, and when 700 slots are allocated, the minimum number of
stragglers is 0. Except for when the number of stragglers is 10 or 0, when the receivers send local
gradients, the most sent case is when the number of slots allocated to UL2 is 5000, and the minimum
is when the number of slots allocated to UL2 is 4900. This is because when the number of slots allocated
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to UL2  was 4900 , there was only one straggler in UL1 , and 9  receivers attempted to upload local
gradients, causing many collisions.

Note that when there are 400 or 500 slots allocated to UL1, 10 devices have local or global gradients.
However, when looking at the actual accuracy, the latter case shows much higher performance
as 0.728. It can be concluded that when the number of stragglers is too large, the quality of the global
gradient is too low, so that compensation does not work properly.

Finally, in the case of UL1 having 500 slots and UL2 having 5000 slots, the performance is the highest
in terms of test accuracy while compromising latency. Compared to the case where 700 and 4800 slots
are allocated to UL1 and UL2, respectively, that is, the conventional SL that does not utilize UL2, the
additional UL-DL increases the test accuracy up to 19.4%, while latency increased up to 6.35 times.
Since this result is measured when additional UL-DL is applied for every UL-DL, it can be considered
as the worst case in terms of latency. However, this can be solved by optimizing the frequency of
applying the additional UL-DL. In the case of original SL, which actually operates without UL2 with 700
UL1 slots, high non-iidness is not overcome.

5.7 Summary
This chapter studied, model training in AI on edge. The ideas, methodologies and approaches proposed
in this chapter can help ML algorithms learn the vast amount of information gathered while performing
different fire-fighting manoeuvres.

In section 5.2, different distributed model training schemes for ML, that is FL, SL, SFL were introduced.
The basic learning mechanisms of these methods were illustrated and compared in terms of test
accuracy, processing time delay and communication overhead. The simulation results showed that SL
and FL with five local training have closer test accuracy to central learning while SFL shows relatively
lower accuracy. SL showed significantly high processing time delay and communication overhead,
which decreases with increasing the number of clients. On the other hand, because of their
dependencies on model size, these two performance indices stay the same in FL.

In section 5.3, we designed a distributed learning procedure that achieves an optimal trade-off between
accuracy and latency in a non-symmetric environment. The proposed approach, called Mix2FLD,
outperforms FL in terms of both test accuracy and latency on cellular networks.

In section 5.4, a study on the different types of SL as well as FL and federated distillation and their
performances was conducted. We categorized SL based on its architecture and its operation into three
categories: sequential SL, SL architecture 1, and SL architecture 2. Based on the simulation results, SL
architecture 2 is the best architecture.

In section 5.5, we examined the effect of changing the mini-batch size in SL. By defining an objective
function and using it in an optimization problem to increase accuracy and decrease latency, we
observed a trade-off between test accuracy and latency. In particular, it was shown that when we
increase the test accuracy, the optimal mini-batch size and the test accuracy both decrease and
conversely when we increase the test accuracy, the optimal mini-batch size and the test accuracy both
increase.

Lastly, in an effort to combat the adverse effects of outage on SL, we added supplementary UL-DL
phases to the SL method in section 5.6. We evaluate the test accuracy and latency by allocating a given
resource amount in various ways between the newly introduced UL-DL and the existing SL UL-DL.
According to the simulation results, when more resources are allocated to the existing UL-DL, the
number of stragglers become small, but the test accuracy remains low because the severe non-iidness
cannot be overcome. When more resources are allocated to the additional UL-DL, the quality of the
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global gradient increases, but the test accuracy is low because there are many stragglers in the existing
UL. That is, a trade-off for test accuracy occurs as the quality of the global gradient and the number of
UL stragglers change depending on which UL-DL is allocated. As a result, compared to existing SL, the
test accuracy increases by up to 19.4%, while the latency increases by up to 6.35 times.
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6 Conclusions and outlooks

The main objective of this deliverable is to provide a final status report about the work that has been
conducted as part of WP4 AI assisted communications.

In chapter 2, novel drone localization and coordination technologies were shown. First, to improve the
performance of DAE, we proposed a new denoising framework, named nlDAE which can maximize the
efficiency of the ML approach for wireless communications where noise is typically easier to regenerate
than original data owing to its stochastic characteristics. Second, we proposed a Q-learning-based low
complexity beam tracking algorithm for mmWave MIMO systems which can track the directional of
signal with high resolution and requires only a few beam searches with low overhead. Third, to solve
the autonomous BS management in a distributed manner, ML-based approaches were used in
distributed systems settings. The proposed scheme offers a promising solution to find optimal
trajectories in the operating area and network coverage control of DBSes that can cover as many users
as possible.

In chapter 3, we used both a centralized we well as a decentralized approach for offloading computation.
First, we introduced FlexSensing, a centralized task offloading decision making algorithm and then we
presented a decentralize task offloading decision making. Finally, we introduced an IoV network for
distributed caching in video streaming services provided via D2D links. Using DRL, we jointly optimized
video delivery decisions by maximizing the average video quality under the constraints on the playback
delays and the data rate guarantees.

In chapter 4, topologies of edge using AI were illustrated. First, we proposed resource allocation in
WPCNs using the DDPG. It was shown that the DDPG is able to deal with the complexity problem of a
network of five nodes and an HAP. It can even outperform the traditional slot-oriented schemes in terms
of long-term expected throughput. Second, meta-learning approaches were proposed to tackle the
insufficient pilot problem for IoT scenarios.

In chapter 5, we analysed three popular distributed model training methods in terms of convergence
time, processing delay and communication overhead. Then, we designed a distributed learning method
that achieves an optimal trade-off between accuracy and latency in an asymmetric environment. After
that, we conducted a study on the different types of SL as well as FL and federated distillation and
compared their performances. Then, we investigated the trade-off between accuracy and latency as
the mini-batch size changes in SL. By crafting an objective function which takes into the account these
two criteria, we were able to find the optimal mini-batch size that achieves the optimal trade-off between
the two. Finally, we added supplementary UL-DL communication phases to the standard SL method
which lead to an increase in test accuracy by up to 19.4% and an increase in latency by up to 6.35
times.
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